Solveeit Logo

Question

Question: How to find \[\dfrac{{dy}}{{dx}}\] if \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]...

How to find dydx\dfrac{{dy}}{{dx}} if y=ln(8x2+9y2)y = \ln \left( {8{x^2} + 9{y^2}} \right)

Explanation

Solution

Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.

Formula Used:
We will use the following formulas:

  1. Derivative formula: ddx(lnx)=1x\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}
  2. Derivative formula: ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}

Complete step by step solution:
We are given with a function y=ln(8x2+9y2)y = \ln \left( {8{x^2} + 9{y^2}} \right)
Now, we will find the derivative of the given function.
Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.
Using the derivative formula ddx(lnx)=1x\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}, we get
dydx=18x2+9y2[ddx(8x2+9y2)]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]
Simplifying the equation, we get
dydx=18x2+9y2ddx(8x2)+18x2+9y2ddx(9y2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)
Now, by using the derivative formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, we get
dydx=82x8x2+9y2+92y8x2+9y2dydx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}
Multiplying the terms, we get
dydx=16x8x2+9y2+18y8x2+9y2dydx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}
Rewriting the equation, we get
dydx18y8x2+9y2dydx=16x8x2+9y2\Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}
Now, by taking out the common factor, we get
dydx(118y8x2+9y2)=16x8x2+9y2\Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}
Taking LCM of the terms inside the bracket on the RHS, we get
dydx(1×8x2+9y28x2+9y218y8x2+9y2)=16x8x2+9y2\Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}
dydx(8x2+9y218y8x2+9y2)=16x8x2+9y2\Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}
Now, by rewriting the terms, we get
dydx=16x8x2+9y2(8x2+9y218y8x2+9y2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}
Cancelling out the same terms of the fractions, we get
dydx=16x8x2+9y218y\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}

Therefore, the derivative dydx\dfrac{{dy}}{{dx}} of the function y=ln(8x2+9y2)y = \ln \left( {8{x^2} + 9{y^2}} \right) is 16x8x2+9y218y\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}.

Note:
We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the termsxx andyy. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.