Solveeit Logo

Question

Question: How to expand \( {(3x - 2)^{ - 2}} \) in ascending powers of \( \dfrac{1}{x} \) , stating the first ...

How to expand (3x2)2{(3x - 2)^{ - 2}} in ascending powers of 1x\dfrac{1}{x} , stating the first four non-zero terms and the value of xx for which the expansion is valid?

Explanation

Solution

Hint : Use of Binomial theorem to expand the given equation. First take out 33 common from the equation then expand the values as need using the basic formula of Binomial theorem that is (1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+..{(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1){x^2}}}{{2!}} + \dfrac{{n(n - 1)(n - 2){x^3}}}{{3!}} + .. just put the values accordingly and get the results.

Complete step-by-step answer :
We are given the equation (3x)2{\left( {3 - x} \right)^{ - 2}} to expand in ascending orders of 1x\dfrac{1}{x} , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: (1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+..{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. (i)
Since we want only four non zero terms so we can stop at fourth term only.

Case 11 :
Since we need (1+x)\left( {1 + x} \right) so take 33 common from the given equation and we get:
32(1x3)2{3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} .
On further solving we get:
132(1x3)2=19(1x3)2\dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}}
On equating the above term and equation (i) we get:
x=x3x = \dfrac{{ - x}}{3} and n=2n = - 2
Just put these values in the Expansion formula (i) and we get:
(1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+.. (1+x3)2=1+(2)(x3)+(2)(21)(x3)22!+(2)(21)(22)(x3)33!   {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\\ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
Simplifying it, and we get:
(1+x3)2=(1+2x3+x23+4x327){\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right)
Substituting this value in 19(1+x3)2\dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} :
19(1+x3)2=19(1+2x3+x23+4x327)\dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right)
Opening the parenthesis on the right side and we get:
19(1+x3)2=19+2x27+x227+4x3243\dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} .
Since the value of xx is given by x3\dfrac{{ - x}}{3} .And x3<1\left| {\dfrac{{ - x}}{3}} \right| < 1 So the value of xx for which the expansion is valid is x<3\left| x \right| < 3 .

Case 22 :
Next, we repeat the same steps with some changes:
Since we need (1+x)\left( {1 + x} \right) so take x- x common now from the given equation and we get:
(x)2(13x)2{\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}}
On further solving we get:
1x2(13x)2=1x2(13x)2\dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}}
On equating the above term and equation (i) we get:
x=3xx = \dfrac{{ - 3}}{x} and n=2n = - 2
Just put these values in the Expansion formula (i) and we get:
(1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+.. (1+3x)2=1+(2)(3x)+(2)(21)(3x)22!+(2)(21)(22)(3x)33!  {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\\ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\\
Simplifying it, and we get:
(1+3x)2=(1+6x+27x2+108x3){\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right)
Substituting this value in 1x2(13x)2\dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} :
1x2(1+3x)2=1x2(1+6x+27x2+108x3)\dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right)
Opening the parenthesis on the right, side and we get:
1x2(1+3x)2=1x2+6x3+27x4+108x5\dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}}
Since the value of xx is given by 3x\dfrac{{ - 3}}{x}.And 3x<1\left| {\dfrac{{ - 3}}{x}} \right| < 1 . So the value of xx for which the expansion is valid is x>3\left| x \right| > 3 .

Note : There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.