Solveeit Logo

Question

Question: How to do you find the volume of the parallelepiped with the adjacent edges \(pq, pr\,and\,ps\) wher...

How to do you find the volume of the parallelepiped with the adjacent edges pq,prandpspq, pr\,and\,ps where p(3,0,1), q(1,2,5), r(5,1,1) and s(0,4,2)p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right).

Explanation

Solution

Parallelogram means an object having a parallel plane if the adjacent side of the parallelogram are given in the vectors as x, y and z. The volume of a parallelepiped determined by the vectors a, b, c (where a, b and c share the same initial point) is the magnitude of their scalar triple product. Then the volume of such a parallelogram can be calculated by taking the dot product of side x with the cross product of y and z.

Complete step by step answer:
Given data is as below: the coordinates of the sides of the parallelogram are given as –
p(3,0,1), q(1,2,5), r(5,1,1) and s(0,4,2)p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)
Now, we will find the three vectors pq, pr and ps using coordinates.So,
pq\overrightarrow {pq} = q-p
pq=(1,2,5)(3,0,1)\Rightarrow \overrightarrow {pq}= \left( { - 1,2,5} \right) - \left( {3,0,1} \right)
pq=(13,20,51)\Rightarrow \overrightarrow {pq} = ( - 1 - 3,2 - 0,5 - 1)
Simplify the values, we get,
\overrightarrow {pq} $$$$ = ( - 4,2,4)
Next,
pr\overrightarrow {pr} = r - p
pr=(5,1,1)(3,0,1)\Rightarrow \overrightarrow {pr}= \left( {5,1, - 1} \right) - \left( {3,0,1} \right)
pr=(53,10,11)\Rightarrow \overrightarrow {pr}= (5 - 3,1 - 0, - 1 - 1)
Simplify the values, we get,
=(2,1,2)= (2,1, - 2)
And,
ps\overrightarrow {ps} = s – p
ps=(0,4,2)(3,0,1)\Rightarrow \overrightarrow {ps}= \left( {0,4,2} \right) - \left( {3,0,1} \right)
ps=(03,40,21)\Rightarrow \overrightarrow {ps}= (0 - 3,4 - 0,2 - 1)
Simplify the values, we get,
ps=(3,4,1)\overrightarrow {ps}= ( - 3,4,1)

The scalar triple product is given by the determinant of the matrix (3×3)(3 \times 3) that has in the rows the three components of the three vectors:
4+2+4\left| { - 4 + 2 + 4} \right|
+2+12\Rightarrow \left| { + 2 + 1 - 2} \right|
3+4+1\Rightarrow \left| { - 3 + 4 + 1} \right|
The expression to calculate the volume is given
V=PS(PQ×PR)V = \left| {PS \cdot \left( {PQ \times PR} \right)} \right|
Therefore, these three vectors can be used to calculate the volume of parallelogram as the triple product that can be expressed in determinant as follow,
V=a(b×c)V = |a \cdot (b \times c)|

{{a_1}}&{{a_2}}&{{a_3}} \\\ {{b_1}}&{{b_2}}&{{b_3}} \\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| \\\ \Rightarrow V= {a_1}[{b_2}{c_3} - {c_2}{b_3}] - {a_2}[{b_1}{c_3} - {b_3}{c_1}] + {a_3}[{b_1}{c_2} - {b_2}{c_1}] \\\

Substituting the values in the determinant form as,

{ - 4}&2&4 \\\ 2&1&{ - 2} \\\ { - 3}&4&1 \end{array}} \right|$$ The volume can be calculated in the determinant form as, $$V = - 4[1(1) - 4( - 2)] - 2[2(1) - ( - 2)( - 3)] + 4[2(4) - 1( - 3)]$$ Simplify the values, we get, $$V = - 4[1 + 8] - 2[2 - 6] + 4[8 + 3]$$ $$\Rightarrow V = - 4(9) - 2( - 4) + 4(11)$$ $$\Rightarrow V= - 36 + 8 + 44 \\\ \Rightarrow V= 16 \\\ $$ $$\therefore \left| V \right| = \left| {16} \right| = 16$$ **Thus, the volume of the parallelepiped is given as $$16$$.** **Note:** Parallelepiped is a 3-D shape whose faces are all parallelograms. The volume of a parallelepiped is equal to the product of its surface area and height. The dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number.