Solveeit Logo

Question

Question: How to divide \({{1}^{2}},{{2}^{2}},....,{{64}^{2}}\) set into four subsets with equal sum and 16 nu...

How to divide 12,22,....,642{{1}^{2}},{{2}^{2}},....,{{64}^{2}} set into four subsets with equal sum and 16 numbers in each?

Explanation

Solution

We have to divide the squares of the above into four subsets with equal sums and 16 numbers in each. We start to solve the problem by taking the first four numbers and adding the squares to them in the given set to get the required result.

Complete step-by-step solution:
We are given a set of squares from 1 to 64 and need to find four subsets with equal sums. We will start to solve the question by starting with 4 squares and adding squares to them in the given set to get the required result.
We consider the first four squares from the given set and add the next four squares to them by keeping the sum as even as possible. We get,
12+82=65\Rightarrow {{1}^{2}}+{{8}^{2}}=65
22+72=53\Rightarrow {{2}^{2}}+{{7}^{2}}=53
32+62=45\Rightarrow {{3}^{2}}+{{6}^{2}}=45
42+52=41\Rightarrow {{4}^{2}}+{{5}^{2}}=41
In the above, we have considered the first eight terms in the set.
We need to repeat the same with the next eight terms in the given set.
Applying the same, we get,
92+162=337\Rightarrow {{9}^{2}}+{{16}^{2}}=337
102+152=325\Rightarrow {{10}^{2}}+{{15}^{2}}=325
112+142=317\Rightarrow {{11}^{2}}+{{14}^{2}}=317
122+132=313\Rightarrow {{12}^{2}}+{{13}^{2}}=313
In the above, we have considered the eighth term to the sixteenth term in the given set.
From the above, we can notice that the differences between the sums are 4,7, or 12.
We combine the two sets of the sums above to free out the differences in each group of two sums. Following the same, we get,
12+82+102+152=390\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}=390
22+72+92+162=390\Rightarrow {{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}=390
32+62+122+132=358\Rightarrow {{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}=358
42+52+112+142=358\Rightarrow {{4}^{2}}+{{5}^{2}}+{{11}^{2}}+{{14}^{2}}=358
We need to repeat the same procedure for the next sixteen squares. We get,
172+242+262+312=2502\Rightarrow {{17}^{2}}+{{24}^{2}}+{{26}^{2}}+{{31}^{2}}=2502
182+232+252+322=2502\Rightarrow {{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=2502
192+222+282+292=2470\Rightarrow {{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}=2470
202+212+272+302=2470\Rightarrow {{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}=2470
Now, we need to add the above two sets in reverse order to free out the differences in each group of two sums.
On adding, we get,
12+82+102+152+202+212+272+302=2860.....(1)\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}=2860.....\left( 1 \right)
22+72+92+162+192+222+282+292=2860.....(2)\Rightarrow {{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}+{{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}=2860.....\left( 2 \right)
32+62+122+132+182+232+252+322=2860.....(3)\Rightarrow {{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}+{{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=2860.....\left( 3 \right)
42+52+112+142+172+242+262+312=2860.....(4)\Rightarrow {{4}^{2}}+{{5}^{2}}+{{11}^{2}}+{{14}^{2}}+{{17}^{2}}+{{24}^{2}}+{{26}^{2}}+{{31}^{2}}=2860.....\left( 4 \right)
Adding the equations (1)\left( 1 \right) and (2)\left( 2 \right) , we get,
12+82+102+152+202+212+272+302+22+72+92+162+192+222+282+292=2860+2860\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}+{{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}=2860+2860
12+82+102+152+202+212+272+302+22+72+92+162+192+222+282+292=5720\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}+{{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}=5720
Adding the equations (1)\left( 1 \right) and (3)\left( 3 \right) , we get,
12+82+102+152+202+212+272+302+32+62+122+132+182+232+252+322=2860+2860\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}+{{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=2860+2860
12+82+102+152+202+212+272+302+32+62+122+132+182+232+252+322=5720\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}+{{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=5720
Adding the equations (1)\left( 1 \right) and (4)\left( 4 \right) , we get,
12+82+102+152+202+212+272+302+42+52+112+142+172+242+262+312=2860+2860\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{4}^{2}}+{{5}^{2}}+{{11}^{2}}+{{14}^{2}}+{{17}^{2}}+{{24}^{2}}+{{26}^{2}}+{{31}^{2}}=2860+2860
12+82+102+152+202+212+272+302+42+52+112+142+172+242+262+312=5720\Rightarrow {{1}^{2}}+{{8}^{2}}+{{10}^{2}}+{{15}^{2}}+{{20}^{2}}+{{21}^{2}}+{{27}^{2}}+{{30}^{2}}+{{4}^{2}}+{{5}^{2}}+{{11}^{2}}+{{14}^{2}}+{{17}^{2}}+{{24}^{2}}+{{26}^{2}}+{{31}^{2}}=5720
Adding the equations (2)\left( 2 \right) and (3)\left( 3 \right) , we get,
22+72+92+162+192+222+282+292+32+62+122+132+182+232+252+322=2860+2860\Rightarrow {{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}+{{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}+{{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}+{{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=2860+2860
22+72+92+162+192+222+282+292+32+62+122+132+182+232+252+322=5720\Rightarrow {{2}^{2}}+{{7}^{2}}+{{9}^{2}}+{{16}^{2}}+{{19}^{2}}+{{22}^{2}}+{{28}^{2}}+{{29}^{2}}+{{3}^{2}}+{{6}^{2}}+{{12}^{2}}+{{13}^{2}}+{{18}^{2}}+{{23}^{2}}+{{25}^{2}}+{{32}^{2}}=5720
\therefore The four subsets with equal sum and 16 numbers in each are:
\left\\{ {{1}^{2}},{{2}^{2}},{{7}^{2}},{{8}^{2}},{{9}^{2}},{{10}^{2}},{{15}^{2}},{{16}^{2}},{{19}^{2}},{{20}^{2}},{{21}^{2}},{{22}^{2}},{{27}^{2}},{{28}^{2}},{{29}^{2}},{{30}^{2}} \right\\} , \left\\{ {{1}^{2}},{{3}^{2}},{{6}^{2}},{{8}^{2}},{{10}^{2}},{{12}^{2}},{{13}^{2}},{{15}^{2}},{{18}^{2}},{{20}^{2}},{{21}^{2}},{{23}^{2}},{{25}^{2}},{{27}^{2}},{{30}^{2}},{{32}^{2}} \right\\} ,
\left\\{ {{1}^{2}},{{4}^{2}},{{5}^{2}},{{8}^{2}},{{10}^{2}},{{11}^{2}},{{14}^{2}},{{15}^{2}},{{17}^{2}},{{20}^{2}},{{21}^{2}},{{24}^{2}},{{26}^{2}},{{27}^{2}},{{30}^{2}},{{31}^{2}} \right\\} , and
\left\\{ {{2}^{2}},{{3}^{2}},{{6}^{2}},{{7}^{2}},{{9}^{2}},{{12}^{2}},{{13}^{2}},{{16}^{2}},{{18}^{2}},{{19}^{2}},{{22}^{2}},{{23}^{2}},{{25}^{2}},{{28}^{2}},{{29}^{2}},{{32}^{2}} \right\\}

Note: We should be careful while performing addition between the squares to get precise results. We must know which set of squares are to be added to free out the differences in each group of two sums.