Solveeit Logo

Question

Question: How to differentiate definite integral ?...

How to differentiate definite integral ?

Explanation

Solution

Definite integral are those integration which have limits, for example abf(x)dx\int\limits_{a}^{b}{f\left( x \right)}dx is a definite integral first we will integrate function f , If the limits of the integral is constant number then the derivative value is 0. If the limits are functions of some variable , we can find the derivative by Leibniz rule. Leibniz rule states ddxb(x)a(x)f(x,t)dt=b(x)a(x)(xf(x,t))dt+f(x,a(x))a(x)xf(x,b(x))b(x)x\dfrac{d}{dx}\int\limits_{b\left( x \right)}^{a\left( x \right)}{f\left( x,t \right)dt}=\int\limits_{b\left( x \right)}^{a\left( x \right)}{\left( \dfrac{\partial }{\partial x}f\left( x,t \right) \right)}dt+f\left( x,a\left( x \right) \right)\dfrac{\partial a\left( x \right)}{\partial x}-f\left( x,b\left( x \right) \right)\dfrac{\partial b\left( x \right)}{\partial x}

Complete step-by-step solution:
When we differentiate a integral, if the limits are function of some variable, for example if we have to differentiate b(t)a(t)f(x,t)dt\int\limits_{b\left( t \right)}^{a\left( t \right)}{f\left( x,t \right)}dt with respect to x. First we can differentiate the function f with respect to x and then integrate with respect to t. then we have to add the result with f(x,a(x))a(x)xf(x,b(x))b(x)xf\left( x,a\left( x \right) \right)\dfrac{\partial a\left( x \right)}{\partial x}-f\left( x,b\left( x \right) \right)\dfrac{\partial b\left( x \right)}{\partial x} .
If the function f is pure function of t, then (xf(t))\left( \dfrac{\partial }{\partial x}f\left( t \right) \right) will be equal to 0, so the result will be f(a(x))a(x)xf(b(x))b(x)xf\left( a\left( x \right) \right)\dfrac{\partial a\left( x \right)}{\partial x}-f\left( b\left( x \right) \right)\dfrac{\partial b\left( x \right)}{\partial x}

Note: We will solve a example by using above formula , let's take function f is equal to log(x+t)\log \left( x+t \right) . let’s take the limits are form x to x2{{x}^{2}} .The value of ddxb(x)a(x)log(x+t)dt\dfrac{d}{dx}\int\limits_{b\left( x \right)}^{a\left( x \right)}{\log \left( x+t \right)dt} is equal to xx2(xlog(x+t))dt+log(x+x2)x2xlog(x+x)xx\int\limits_{x}^{{{x}^{2}}}{\left( \dfrac{\partial }{\partial x}\log \left( x+t \right) \right)}dt+\log \left( x+{{x}^{2}} \right)\dfrac{\partial {{x}^{2}}}{\partial x}-\log \left( x+x \right)\dfrac{\partial x}{\partial x} . We know that the derivative of x2{{x}^{2}} with respect to x is equal to 2x and derivative of x is equal to 1. After solving it we get ddxb(x)a(x)log(x+t)dt\dfrac{d}{dx}\int\limits_{b\left( x \right)}^{a\left( x \right)}{\log \left( x+t \right)dt} is equal to log(x+x2)log(2x)log(x)+2xlog(x+x2)log(2x)\log \left( x+{{x}^{2}} \right)-\log \left( 2x \right)-\log \left( x \right)+2x\log \left( x+{{x}^{2}} \right)-\log \left( 2x \right) . if we solve further, we get
ddxb(x)a(x)log(x+t)dt=(2x+1)log(x+x2)log(4x3)\Rightarrow \dfrac{d}{dx}\int\limits_{b\left( x \right)}^{a\left( x \right)}{\log \left( x+t \right)dt}=\left( 2x+1 \right)\log \left( x+{{x}^{2}} \right)-\log \left( 4{{x}^{3}} \right) . From this formula we can easily derive that the value of ddx(cxf(t)dt)\dfrac{d}{dx}\left( \int\limits_{c}^{x}{f\left( t \right)dt} \right) is equal to f ( x ) where c is any constant number.