Solveeit Logo

Question

Question: How to derive power reducing formula for \(\int {\left( {{{\sec }^n}x} \right)dx} \) and \(\int {\le...

How to derive power reducing formula for (secnx)dx\int {\left( {{{\sec }^n}x} \right)dx} and (tannx)dx\int {\left( {{{\tan }^n}x} \right)dx} for integration?

Explanation

Solution

We have to derive power reducing formula for (secnx)dx\int {\left( {{{\sec }^n}x} \right)dx} and (tannx)dx\int {\left( {{{\tan }^n}x} \right)dx} for integration. For (secnx)dx\int {\left( {{{\sec }^n}x} \right)dx} , began by writing secnx{\sec ^n}x as secn2xsec2xdx{\sec ^{n - 2}}x \cdot {\sec ^2}xdx and letting u=secn2xu = {\sec ^{n - 2}}x and dv=sec2xdxdv = {\sec ^2}xdx. Then use integration by parts to derive the result. For (tannx)dx\int {\left( {{{\tan }^n}x} \right)dx} , began by writing tannx{\tan ^n}x as tann2xtan2x{\tan ^{n - 2}}x \cdot {\tan ^2}x and then use trigonometry identity to convert tan2x{\tan ^2}x into sec2x{\sec ^2}x. Then, let u=tann2xu = {\tan ^{n - 2}}x and dv=sec2xdxdv = {\sec ^2}xdx in integration by parts and derive the result.
Formula used:
The integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
Trigonometric identity: tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., [f(x)±g(x)]dx=f(x)dx±g(x)dx\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx}
Integration formula: sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x and secxdx=lnsecx+tanx\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|
Differentiation formula: ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x
Integration by parts: udv=uvvdu\int {udv} = uv - \int {vdu}

Complete step by step solution:
We have to derive power reducing formula for (secnx)dx\int {\left( {{{\sec }^n}x} \right)dx} and (tannx)dx\int {\left( {{{\tan }^n}x} \right)dx} for integration.
Consider (secnx)dx\int {\left( {{{\sec }^n}x} \right)dx}
It can be written as secn2xsec2xdx\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx}
Now, use integration by parts with u=secn2xu = {\sec ^{n - 2}}x and dv=sec2xdxdv = {\sec ^2}xdx…(i)
Differentiate uu with respect to xx.
dudx=ddx(secn2x)\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\sec }^{n - 2}}x} \right)…(ii)
Now, using the differentiation formula ddx(secx)=secxtanx\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x in differentiation (ii), we get
dudx=(n2)secn2x(secxtanx)\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\sec ^{n - 2}}x\left( {\sec x\tan x} \right)
du=(n2)secn1xtanx\Rightarrow du = \left( {n - 2} \right){\sec ^{n - 1}}x\tan x…(iii)
Now, integrate vv with respect to xx.
dv=sec2xdx\int {dv} = \int {{{\sec }^2}xdx} …(iv)
Now, using the integration formula sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x in integral (iv), we get
v=tanxv = \tan x…(v)
The integration by parts formula is:
udv=uvvdu\int {udv} = uv - \int {vdu}
Put the value of u,v,du,dvu,v,du,dv from (i), (iii) and (v).
secn2xsec2xdx=secn2xtanxtanx(n2)secn1xtanxdx\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx} = {\sec ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\sec }^{n - 1}}x\tan xdx}
Using property that the integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
secnxdx=secn2xtanx(n2)tan2xsecn1xdx\Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\tan }^2}x{{\sec }^{n - 1}}xdx}…(vi)
Now, put the value of tan2x{\tan ^2}x in integral (vi).
secnxdx=secn2xtanx(n2)(secx1)secn1xdx\Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {\left( {{{\sec }^x} - 1} \right){{\sec }^{n - 1}}xdx}
secnxdx=secn2xtanx(n2)secnxdx+(n2)secn2xdx\Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\sec }^n}xdx} + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx}
Move (n2)secnxdx\left( {n - 2} \right)\int {{{\sec }^n}xdx} to the left side and simplify it.
(1+n2)secnxdx=secn2xtanx+(n2)secn2xdx\Rightarrow \left( {1 + n - 2} \right)\int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx}
secnxdx=secn2xtanxn1+n2n1secn2xdx\Rightarrow \int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx}
Second integral: (tannx)dx\int {\left( {{{\tan }^n}x} \right)dx}
It can be written as tann2xtan2xdx\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx}
Use identity tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x.
tann2xtan2xdx=tann2x(sec2x1)dx\Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot \left( {{{\sec }^2}x - 1} \right)dx}
tann2xtan2xdx=tann2xsec2xdxtann2xdx\Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot {{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx}
Now, use integration by parts with u=tann2xu = {\tan ^{n - 2}}x and dv=sec2xdxdv = {\sec ^2}xdx…(vii)
Differentiate uu with respect to xx.
dudx=ddx(tann2x)\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\tan }^{n - 2}}x} \right)…(viii)
Now, using the differentiation formula ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x in differentiation (viii), we get
dudx=(n2)tann1x(sec2x)\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\tan ^{n - 1}}x\left( {{{\sec }^2}x} \right)
du=(n2)tann1xsec2x\Rightarrow du = \left( {n - 2} \right){\tan ^{n - 1}}x{\sec ^2}x…(ix)
Now, integrate vv with respect to xx.
dv=sec2xdx\int {dv} = \int {{{\sec }^2}xdx} …(x)
Now, using the integration formula sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x in integral (x), we get
v=tanxv = \tan x…(xi)
The integration by parts formula is:
udv=uvvdu\int {udv} = uv - \int {vdu}
Put the value of u,v,du,dvu,v,du,dv from (vii), (ix) and (xi).
tann2xtan2xdx=tann2xtanxtanx(n2)tann1xsec2xdxtann2xdx\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = {\tan ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\tan }^{n - 1}}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx}
Using property that the integral of the product of a constant and a function = the constant ×\times integral of the function.
i.e., (kf(x)dx)=kf(x)dx\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} , where kk is a constant.
tannxdx=tann1x(n2)tannxsec2xdxtann2xdx\Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx}…(xii)
Now, put the value of sec2x{\sec ^2}x in integral (xii).
tannxdx=tann1x(n2)tannx(tan2x+1)dxtann2xdx\Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x\left( {{{\tan }^2}x + 1} \right)dx} - \int {{{\tan }^{n - 2}}xdx}
tannxdx=tann1x(n2)tann+2xdx(n2)tannxdxtann2xdx\Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^{n + 2}}xdx - } \left( {n - 2} \right)\int {{{\tan }^n}xdx} - \int {{{\tan }^{n - 2}}xdx}
Move (n2)tannxdx\left( {n - 2} \right)\int {{{\tan }^n}xdx} to the left side and simplify it.
(1+n2)tannxdx=tann1x+(n1)tann2xdx\Rightarrow \left( {1 + n - 2} \right)\int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x + \left( {n - 1} \right)\int {{{\tan }^{n - 2}}xdx}
tannxdx=tann1xn1+tann2xdx\Rightarrow \int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx}
Final solution: Hence, secnxdx=secn2xtanxn1+n2n1secn2xdx\int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx} and tannxdx=tann1xn1+tann2xdx\int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx} .

Note:
In the reduction formulas, we reduce the exponent of secant and tangent by 22. Thus, if the formulas are applied repeatedly, the exponent can eventually be reduced to 00 if nn is even or 11 if nn is odd, at which point the integration can be completed.