Solveeit Logo

Question

Question: How to complete this identity \(\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \b...

How to complete this identity cos(αβ)cosαcosβ\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}?
A. tanαtanβ+cotβ\tan \alpha \tan \beta + \cot \beta
B. 1+tanαtanβ1 + \tan \alpha \tan \beta
C. 1+cotαtanβ1 + \cot \alpha \tan \beta
D. 1+cotαcotβ1 + \cot \alpha \cot \beta

Explanation

Solution

This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of (A+B)\left( {A + B} \right) or (AB)\left( {A - B} \right)in terms of trigonometric functions of AA and BB. The used formula here is:
cos(AB)=cosAcosB+sinAsinB\Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B

Complete step-by-step answer:
Given an expression of trigonometric expression functions.
The given expression is cos(αβ)cosαcosβ\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}, consider this as given below:
cos(αβ)cosαcosβ\Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}
We know the compound angle formula of cosine, hence applying it to the numerator of the given expression, as shown below:
cos(αβ)=cosαcosβ+sinαsinβ\Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta
The given denominator of the expression is given below:
cosαcosβ\Rightarrow \cos \alpha \cos \beta
Now substitution the obtained simplified expression of the numerator of the given expression, as shown below:
cos(αβ)cosαcosβ=cosαcosβ+sinαsinβcosαcosβ\Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}
Now split the fraction into separate fractions on right hand side of the above equation, as shown below:
cos(αβ)cosαcosβ=cosαcosβcosαcosβ+sinαsinβcosαcosβ\Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }} + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}
Now after splitting the fractions, the first term becomes 1, as the numerator and the denominator are equal.
Now the second term is split in such a way that it can be converted to another trigonometric function:
cos(αβ)cosαcosβ=1+(sinαcosα)(sinβcosβ)\Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)
We know that sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A, applying this identity below:
Here replacing the expression sinαcosα\dfrac{{\sin \alpha }}{{\cos \alpha }} with tanα\tan \alpha , and replacing the expression sinβcosβ\dfrac{{\sin \beta }}{{\cos \beta }} with tanβ\tan \beta ,as shown below:
cos(αβ)cosαcosβ=1+tanαtanβ\Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta

Final Answer: The expression is equal to, cos(αβ)cosαcosβ=1+tanαtanβ\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta

Note:
Please note that the formula of cosine compound angles formula is used to solve this problem, but there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
sin(A+B)=sinAcosB+cosAsinB\Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
sin(AB)=sinAcosBcosAsinB\Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
cos(AB)=cosAcosB+sinAsinB\Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(AB)=tanAtanB1+tanAtanB\Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}