Solveeit Logo

Question

Question: How much energy is needed to convert \(23.0{\text{ grams}}\) of ice at \( - {10.0^ \circ }{\text{C}}...

How much energy is needed to convert 23.0 grams23.0{\text{ grams}} of ice at 10.0C - {10.0^ \circ }{\text{C}} into steam at 109C{109^ \circ }{\text{C}}?

Explanation

Solution

To solve this we must know the equation to calculate the energy required during phase change and temperature change. In this process when 23.0 grams23.0{\text{ grams}} of ice at 10.0C - {10.0^ \circ }{\text{C}} is converted into steam at 109C{109^ \circ }{\text{C}} there are five steps involved.

Complete solution:
We are given that 23.0 grams23.0{\text{ grams}} of ice at 10.0C - {10.0^ \circ }{\text{C}} is converted into steam at 109C{109^ \circ }{\text{C}}. In this process, there are five steps involved.
Heating ice from 0C{0^ \circ }{\text{C}} to 10.0C - {10.0^ \circ }{\text{C}}: Here, temperature change occurs. Thus,
Q1=mCΔT{Q_1} = mC\Delta T
Where Q1{Q_1} is the energy required,
mm is the mass,
CC is the specific heat capacity of ice,
ΔT\Delta T is the change in temperature.
Substitute 23.0 grams=23.0×103 kg23.0{\text{ grams}} = 23.0 \times {10^{ - 3}}{\text{ kg}} for the mass, 2.108 kJ/kgC2.108{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} for the specific heat capacity of ice, (0(10))=10.0C\left( {0 - \left( { - 10} \right)} \right) = {10.0^ \circ }{\text{C}} for the change in temperature. Thus,
Q1=23.0×103 kg×2.108 kJ/kgC×10.0C{Q_1} = 23.0 \times {10^{ - 3}}{\text{ kg}} \times 2.108{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} \times {10.0^ \circ }{\text{C}}
Q1=0.48484 kJ{Q_1} = 0.48484{\text{ kJ}}
Melting ice at 0C{0^ \circ }{\text{C}}: Here, phase change occurs. Thus,
Q2=mΔH{Q_2} = m\Delta H
Where Q2{Q_2} is the energy required,
mm is the mass,
ΔH\Delta H is the latent heat of melting.
Substitute 23.0 grams=23.0×103 kg23.0{\text{ grams}} = 23.0 \times {10^{ - 3}}{\text{ kg}} for the mass, 334 kJ/kg334{\text{ kJ/kg}} for the latent heat of melting. Thus,
Q2=23.0×103 kg×334 kJ/kg{Q_2} = 23.0 \times {10^{ - 3}}{\text{ kg}} \times 334{\text{ kJ/kg}}
Q2=7.682 kJ{Q_2} = 7.682{\text{ kJ}}
Heating liquid water from 0C{0^ \circ }{\text{C}} to 100C{100^ \circ }{\text{C}}: Here, temperature change occurs. Thus,
Q3=mCΔT{Q_3} = mC\Delta T
Where Q3{Q_3} is the energy required,
mm is the mass,
CC is the specific heat capacity of water,
ΔT\Delta T is the change in temperature.
Substitute 23.0 grams=23.0×103 kg23.0{\text{ grams}} = 23.0 \times {10^{ - 3}}{\text{ kg}} for the mass, 4.186 kJ/kgC4.186{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} for the specific heat capacity of water, (1000)=100C\left( {100 - 0} \right) = {100^ \circ }{\text{C}} for the change in temperature. Thus,
Q3=23.0×103 kg×4.186 kJ/kgC×100C{Q_3} = 23.0 \times {10^{ - 3}}{\text{ kg}} \times 4.186{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} \times {100^ \circ }{\text{C}}
Q3=9.6278 kJ{Q_3} = 9.6278{\text{ kJ}}
Evaporating liquid water at 100C{100^ \circ }{\text{C}}: Here, phase change occurs. Thus,
Q4=mΔH{Q_4} = m\Delta H
Where Q4{Q_4} is the energy required,
mm is the mass,
ΔH\Delta H is the latent heat of evaporation.
Substitute 23.0 grams=23.0×103 kg23.0{\text{ grams}} = 23.0 \times {10^{ - 3}}{\text{ kg}} for the mass, 2256 kJ/kg2256{\text{ kJ/kg}} for the latent heat of evaporation. Thus,
Q4=23.0×103 kg×2256 kJ/kg{Q_4} = 23.0 \times {10^{ - 3}}{\text{ kg}} \times 2256{\text{ kJ/kg}}
Q4=51.888 kJ{Q_4} = 51.888{\text{ kJ}}
Heating steam from 100C{100^ \circ }{\text{C}} to 109C{109^ \circ }{\text{C}}: Here, temperature change occurs. Thus,
Q5=mCΔT{Q_5} = mC\Delta T
Where Q5{Q_5} is the energy required,
mm is the mass,
CC is the specific heat capacity of steam,
ΔT\Delta T is the change in temperature.
Substitute 23.0 grams=23.0×103 kg23.0{\text{ grams}} = 23.0 \times {10^{ - 3}}{\text{ kg}} for the mass, 1.996 kJ/kgC1.996{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} for the specific heat capacity of steam, (109100)=9C\left( {109 - 100} \right) = {9^ \circ }{\text{C}} for the change in temperature. Thus,
Q5=23.0×103 kg×1.996 kJ/kgC×9C{Q_5} = 23.0 \times {10^{ - 3}}{\text{ kg}} \times 1.996{\text{ kJ/kg}}{ \cdot ^ \circ }{\text{C}} \times {9^ \circ }{\text{C}}
Q5=0.413172 kJ{Q_5} = 0.413172{\text{ kJ}}
Now, the total energy required is the summation of the energies required at each step. Thus,
Q=Q1+Q2+Q3+Q4+Q5Q = {Q_1} + {Q_2} + {Q_3} + {Q_4} + {Q_5}
Q=(0.48484+7.682+9.6278+51.888+0.413172) kJQ = \left( {0.48484 + 7.682 + 9.6278 + 51.888 + 0.413172} \right){\text{ kJ}}
Q=70.04 kJQ = 70.04{\text{ kJ}}
Thus, the energy needed to convert 23.0 grams23.0{\text{ grams}} of ice at 10.0C - {10.0^ \circ }{\text{C}} into steam at 109C{109^ \circ }{\text{C}} is 70.04 kJ70.04{\text{ kJ}}.

Note: Remember the steps to calculate the energy needed. The steps are as follows:
1-Heating ice from 0C{0^ \circ }{\text{C}} to 10.0C - {10.0^ \circ }{\text{C}}.
2-Melting ice at 0C{0^ \circ }{\text{C}}.
3-Heating liquid water from 0C{0^ \circ }{\text{C}} to 100C{100^ \circ }{\text{C}}.
4-Evaporating liquid water at 100C{100^ \circ }{\text{C}}.
5-Heating steam from 100C{100^ \circ }{\text{C}} to 109C{109^ \circ }{\text{C}}.