Solveeit Logo

Question

Question: How much does the charge on each capacitor change when \(S\) is closed? ![](https://www.vedantu.co...

How much does the charge on each capacitor change when SS is closed?

Explanation

Solution

The voltage across capacitors will be different when the switch is closed and not closed. We will use the equation connecting charge, voltage and capacitance to find the charge on capacitors.

Complete step by step answer:
For a better understanding, first let us define the values given in the circuit.
Let the given resistances R6  Ω=6  Ω{R_{6\;\Omega }} = 6\;\Omega , R3  Ω=3  Ω{R_{3\;\Omega }} = 3\;\Omega ,
Capacitance of capacitors,C6  μF=6  μF{C_{6\;{\rm{\mu F}}}} = 6\;{\rm{\mu F}}, C3  μF=3  μF{C_{3\;{\rm{\mu F}}}} = 3\;{\rm{\mu F}}
Voltage supplied, V=18  VV = 18\;{\rm{V}}

First let us find the current flowing through the resistors R6  Ω{R_{6\;\Omega }} and R3  Ω{R_{3\;\Omega }}. The current is given by,
I=VR6  Ω+R3  ΩI = \dfrac{V}{{{R_{6\;\Omega }} + {R_{3\;\Omega }}}}
Substituting the values of VV, R6  Ω{R_{6\;\Omega }} and R3  Ω{R_{3\;\Omega }} in the above equation, we ge
I=186+3 =2  A\begin{array}{c} I = \dfrac{{18}}{{6 + 3}}\\\ = 2\;{\rm{A}} \end{array}

When the switch SS is not closed, the voltage V6  μF{V_{6\;{\rm{\mu F}}}} across C6  μF{C_{6\;{\rm{\mu F}}}} and the voltage V3  μF{V_{3\;{\rm{\mu F}}}} across C3  μF{C_{3\;{\rm{\mu F}}}} is 18  V18\;{\rm{V}} itself. Hence,
V6  μF=V3  μF=18  V{V_{6\;{\rm{\mu F}}}} = {V_{3\;{\rm{\mu F}}}} = 18\;{\rm{V}}

Now, we can express the charge across the 6  μF6\;{\rm{\mu F}} capacitor as
Q6  μF=C6  μFV6  μF{Q_{6\;{\rm{\mu F}}}} = {C_{6\;{\rm{\mu F}}}}{V_{6\;{\rm{\mu F}}}}

Substituting the values for C6  μF{C_{6\;{\rm{\mu F}}}} and V6  μF{V_{6\;{\rm{\mu F}}}}, we get
Q6  μF=6×18 =108μC\begin{array}{c} {Q_{6\;{\rm{\mu F}}}} = 6 \times 18\\\ = 108\,{\rm{\mu C}} \end{array}

We can express the charge across the 3  μF3\;{\rm{\mu F}} capacitor as
Q3  μF=C3  μFV3  μF{Q_{3\;{\rm{\mu F}}}} = {C_{3\;{\rm{\mu F}}}}{V_{3\;{\rm{\mu F}}}}

Substituting the values for C3  μF{C_{3\;{\rm{\mu F}}}} and V3  μF{V_{3\;{\rm{\mu F}}}}, we get
Q3  μF=3×18 =54  μC\begin{array}{c} {Q_{3\;{\rm{\mu F}}}} = 3 \times 18\\\ = 54\;{\rm{\mu C}} \end{array}

When the switch SS is closed, the voltage drop across 6  μF6\;{\rm{\mu F}} capacitor will be equal to the voltage drop across R6  Ω=6  Ω{R_{6\;\Omega }} = 6\;\Omega .
V6  μF=V6Ω{V_{6\;{\rm{\mu F}}}} = {V_{6\Omega }}

Now, the voltage drop across R6  Ω=6  Ω{R_{6\;\Omega }} = 6\;\Omega can be written as
V6Ω=IR6Ω{V_{6\Omega }} = I{R_{6\Omega }}

Substituting the values of II and R6  Ω{R_{6\;\Omega }}, we get
V6Ω=2×6 =12  V\begin{array}{c} {V_{6\Omega }} = 2 \times 6\\\ = 12\;{\rm{V}} \end{array}
Hence, V6  μF=12  V{V_{6\;{\rm{\mu F}}}} = 12\;{\rm{V}}

Now, the new charge across C6  μF=6  μF{C_{6\;{\rm{\mu F}}}} = 6\;{\rm{\mu F}} can be written as
q6  μF=C6  μFV6  μF{q_{6\;{\rm{\mu F}}}} = {C_{6\;{\rm{\mu F}}}}{V_{_{6\;{\rm{\mu F}}}}}

Substituting the values of C6  μF{C_{6\;{\rm{\mu F}}}} and V6  μF{V_{6\;{\rm{\mu F}}}}, we get
q6  μF=6×12 =72  μC\begin{array}{c} {q_{6\;{\rm{\mu F}}}} = 6 \times 12\\\ = 72\;{\rm{\mu C}} \end{array}

Similarly, when the switch SS is closed, the voltage drop across 3  μF3\;{\rm{\mu F}} capacitor will be equal to the voltage drop across R3  Ω=3  Ω{R_{3\;\Omega }} = 3\;\Omega .
V3  μF=V3Ω{V_{3\;{\rm{\mu F}}}} = {V_{3\Omega }}

Now, the voltage drop across R3  Ω=3  Ω{R_{3\;\Omega }} = 3\;\Omega can be written as
V3Ω=IR3Ω{V_{3\Omega }} = I{R_{3\Omega }}

Substituting the values of II and R3  Ω{R_{3\;\Omega }}, we get
V3Ω=2×3 =6  V\begin{array}{c} {V_{3\Omega }} = 2 \times 3\\\ = 6\;{\rm{V}} \end{array}
Hence, V3  μF=6  V{V_{3\;{\rm{\mu F}}}} = 6\;{\rm{V}}

Now, the new charge across C3  μF=3  μF{C_{3\;{\rm{\mu F}}}} = 3\;{\rm{\mu F}} can be written as
q3  μF=C3  μFV3  μF{q_{3\;{\rm{\mu F}}}} = {C_{3\;{\rm{\mu F}}}}{V_{{\rm{3}}\;{\rm{\mu F}}}}

Substituting the values of C3  μF{C_{3\;{\rm{\mu F}}}} and V3  μF{V_{3\;{\rm{\mu F}}}}, we get
q3  μF=3×6 =18  μC\begin{array}{c} {q_{3\;{\rm{\mu F}}}} = 3 \times 6\\\ = 18\;{\rm{\mu C}} \end{array}

Now, the change in the charge of 16  μF{\rm{16}}\;{\rm{\mu F}} capacitor after the switch is closed can be written as
ΔQ6  μF=q6  μFQ6  μF\Delta {Q_{{\rm{6}}\;{\rm{\mu F}}}} = {q_{6\;{\rm{\mu F}}}} - {Q_{6\;{\rm{\mu F}}}}

Substituting 78  μC{\rm{78}}\;{\rm{\mu C}} for q6  μF{q_{6\;{\rm{\mu F}}}} and 108  μC108\;{\rm{\mu C}} for Q6  μF{Q_{6\;{\rm{\mu F}}}}, we get
ΔQ6  μF=78108 =36  μC\begin{array}{c} \Delta {Q_{{\rm{6}}\;{\rm{\mu F}}}} = 78 - 108\\\ = - 36\;{\rm{\mu C}} \end{array}

Again, the change in the charge of 3  μF3\;{\rm{\mu F}} capacitor after the switch is closed can be written as
ΔQ3  μF=q3  μFQ3  μF\Delta {Q_{3\;{\rm{\mu F}}}} = {q_{3\;{\rm{\mu F}}}} - {Q_{3\;{\rm{\mu F}}}}

Substituting 18  μC18\;{\rm{\mu C}} for q3  μF{q_{3\;{\rm{\mu F}}}} and 54  μC54\;{\rm{\mu C}} for Q3  μF{Q_{3\;{\rm{\mu F}}}}, we get
ΔQ3  μF=1854 =36  μC\begin{array}{c} \Delta {Q_{3\;{\rm{\mu F}}}} = 18 - 54\\\ = - 36\;{\rm{\mu C}} \end{array}

Therefore, the change in charge on both the capacitors is 36  μC - 36\;{\rm{\mu C}}.

Note:
It should be noted that one end of the circuit is connected to the ground. Since the potential of the ground is always zero, we took the potential difference as 18  V18\;{\rm{V}} itself in calculations when the switch is not closed.