Solveeit Logo

Question

Question: How many total atoms are in \[0.810{\text{ }}g\]of\[{P_2}{O_5}\]?...

How many total atoms are in 0.810 g0.810{\text{ }}gofP2O5{P_2}{O_5}?

Explanation

Solution

A mole is a unit measurement for the amount of substance in the international system of units i.e., SI unit. A mole of a particle or a mole of a substance is defined as 6.02214076×10236.02214076 \times {10^{23}} of a chemical unit, that can be ions, atoms, molecules, etc. Originally it was defined as, the number of atoms in 12 g12{\text{ }}gof carbon-12.

Complete step-by-step answer:
The phosphorus pentoxide i.e., P4O10{P_4}{O_{10}} and it is derived from the empirical formula P2O5{P_2}{O_5}. It is a white crystalline solid. It is also anhydride of phosphoric acid. It’s a powerful dehydrating agent and desiccant.
The 1g1\,g of an atom will be equal to 11mole.
In equation;
1g1\,gof atom =1 = \,\,1\,mole
Since, 11mole contains Avogadro’s number (NA{N_A} ) of atoms
So, 1mole=6.022×1023atoms1\,mole\, = \,6.022\, \times \,{10^{23}}\,atoms
Therefore, for 11 atom will be;
1atom=16.022×1023gatoms1\,atom\, = \,\dfrac{1}{{6.022\, \times \,{{10}^{23}}}}\,g\,atoms
So, the answer will be;
1atom=1.66×1024gatoms1\,atom\, = 1.66\, \times \,{10^{ - 24}}\,g\,atoms
11mole P2O5{P_2}{O_5} contains Avogadro’s number (NA{N_A} ) of atoms
So,11 mole P2O5{P_2}{O_5} contains 6.02214076×10236.02214076 \times {10^{23}} atoms

Let’s calculate the number of moles of Phosphorus pentoxide i.e., P2O5{P_2}{O_5}
Mass of P2O5{P_2}{O_5} = 0.810 g0.810{\text{ }}g
Molar mass of P2O5{P_2}{O_5}= 142  g  mol1142\;g\;mo{l^{ - 1}}
Number of moles of P2O5{P_2}{O_5};
n=massmolarmass\Rightarrow n\,\, = \,\,\dfrac{{mass}}{{molar\,mass}}
n=0.810g142gmol1\Rightarrow n\,\, = \,\,\dfrac{{0.810\,g}}{{142\,gmo{l^{ - 1}}}}\,\,
n=0.00570mol\Rightarrow n\,\, = \,\,0.00570\,\,mol of P2O5{P_2}{O_5}

But here, the question says about total atoms are in 0.810 g0.810{\text{ }}gofP2O5{P_2}{O_5}
n=0.00570mol\Rightarrow n\,\, = \,\,0.00570\,\,mol of P2O5{P_2}{O_5}
0.0057mol×6.023×1023atom/mol\Rightarrow 0.0057\,\,mol\,\, \times \,\,6.023\,\, \times \,\,{10^{23}}\,atom/mol
In P2O5{P_2}{O_5} we have 22 phosphorus atoms and 55 oxygen atoms.

So, 77atoms.
=7×0.0057mol×6.023×1023atom/mol= \,7\, \times \,0.0057\,\,mol\,\, \times \,\,6.023\,\, \times \,\,{10^{23}}\,atom/mol
=24.0×1021atoms= \,24.0\,\, \times \,{10^{21}}\,atoms

So, the answer is =24.0×1021atoms = \,24.0\,\, \times \,{10^{21}}\,atomsare there in 0.810 g0.810{\text{ }}gofP2O5{P_2}{O_5}

Note: If they ask for individual compound,
One mole of P2O5{P_2}{O_5} has 55 moles of oxygen atoms.
Using this we can write two conversion factors;
11 mol P2O5{P_2}{O_5}/ 5 mol Oxygen
or
5 mol Oxygen / 1 mol P2O5{P_2}{O_5}
So, from the first conversion we get,
0.00570molofP2O5×5molOxygen1molP2O5\Rightarrow {\text{0}}{\text{.00570}}\,\,mol\,{\text{of}}\,{P_2}{O_5}\,{{ \times }}\,\dfrac{{5\,\,mol\,\,{\text{Oxygen}}}}{{1\,\,mol\,\,{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}}}
0.0285mol0.0285\,\,mol of oxygen
So, the total number of oxygen atoms,
0.0285mol×6.023×1023atom/mol\Rightarrow 0.0285\,\,mol\,\, \times \,\,6.023\,\, \times \,\,{10^{23}}\,atom/mol
17×1021atoms\Rightarrow 17\,\, \times \,\,{10^{21}}\,atomsof oxygen
Since, in this equation we found the moles of oxygen in atoms.
One mole of P2O5{P_2}{O_5} has 22 moles of phosphorus atoms.

Let’s see from this
We get,
0.00570molofP2O5×2molPhosphorous1molP2O5{\text{0}}{\text{.00570}}\,\,mol\,{\text{of}}\,{P_2}{O_5}\,{{ \times }}\,\dfrac{{2\,\,mol\,\,Phosphorous}}{{1\,\,mol\,\,{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}}}
0.0114mol0.0114\,\,mol of phosphorous
So, the total number of atoms,
0.0114mol×6.023×1023atom/mol\Rightarrow 0.0114\,\,mol\,\, \times \,\,6.023\,\, \times \,\,{10^{23}}\,atom/mol
68×1021atoms\Rightarrow 68\,\, \times \,\,{10^{21}}\,atomsof phosphorous
Since, in this equation we found the moles of phosphorus in atoms.