Solveeit Logo

Question

Question: How many total atoms are in \(0.410\) g of \({{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}\)?...

How many total atoms are in 0.4100.410 g of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}?

Explanation

Solution

We will use the Avogadro number to determine the number of atoms in the given gram. For this first, we have to calculate the moles of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} in the given gram. For this, we will use the mole formula. Then by using the Avogadro number we will determine the numbers of atoms.

Formula used: mole = massmolarmass{\text{mole}}\,\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{molar}}\,\,{\text{mass}}}}

Complete step by step answer:
We will use the mole formula to determine the number of moles of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} as follows:
mole = massmolarmass{\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{molar}}\,{\text{mass}}}}
Molar mass of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} is 141.94141.94 g/mol.
On substituting 0.4100.410 grams for mass and 141.94141.94 for molar mass of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}},
mole = 0.410141.94{\text{mole}}\,{\text{ = }}\,\dfrac{{0.410}}{{141.94}}
mole = 2.88×103{\text{mole}}\,{\text{ = }}\,2.88 \times {10^{ - 3}}
So, the moles of the diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} is 2.88×1032.88 \times {10^{ - 3}}.

According to the Avogadro number,
One mole of any substance =6.02×1023\,6.02 \times {10^{23}} molecules
So, One mole =6.02×1023\,6.02 \times {10^{23}} molecules of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}
One molecule of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} = 77 atoms
So, 6.02×1023\,6.02 \times {10^{23}} molecules or one mole of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} will have,
= 6.02×1023×7\,6.02 \times {10^{23}}\, \times 7 atoms of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}
= 4.214×1024\,4.214 \times {10^{24}} atoms of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}

So, one mole of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} contains4.214×1024\,4.214 \times {10^{24}} atoms.
Then 2.88×1032.88 \times {10^{ - 3}} moles of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} will have, One mole P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} = 4.214×1024\,4.214 \times {10^{24}} atoms 2.88×1032.88 \times {10^{ - 3}} moleP2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} = 4.214×1024×2.88×103\,4.214 \times {10^{24}} \times \,2.88 \times {10^{ - 3}} atoms.
= 1.21×10221.21 \times {10^{22}} atoms

So, 1.21×10221.21 \times {10^{22}} atoms of diphosphorus pentoxide P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} molecules are there in 0.4100.410 g of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}.

Therefore, 1.21×10221.21 \times {10^{22}} atoms is the correct answer.

Note: The number of atoms present in 12g12\,{\text{g}} of carbon-12 is known as one mole. In case of monoatomic, one mole of substance contains Avogadro's number of atoms. The subscript after each atom represents the numbers of that atom. The superscript represents the charge of an ion not the number of that ion. In P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}}, five oxygen atoms and two phosphorous atoms are present, so the total number of atoms is seven. If we have to determine the number of atoms of oxygen and phosphorus separate, then we will multiply the Avogadro number and moles of P2O5{{\text{P}}_{\text{2}}}{{\text{O}}_{\text{5}}} with five four oxygen atoms and with two for phosphorus atoms.