Solveeit Logo

Question

Mathematics Question on Sequence and series

How many terms of the G.PG.P. 3,32,34,...3, \frac{3}{2}, \frac{3}{4}, ... are needed to give the sum 3069512\frac{3069}{512} ?

A

99

B

1212

C

88

D

1010

Answer

1010

Explanation

Solution

Let nn be the number of terms needed. Given that a=3,r=12a=3, r= \frac{1}{2} and Sn=3069512S_{n}= \frac{3069}{512} Now, Sn=a(1rn)1rS_{n} =\frac{a\left(1-r^{n}\right)}{1-r} 3069512\Rightarrow \frac{3069}{512} =3(112n)112=6(112n) = \frac{3\left(1-\frac{1}{2^{n}}\right)}{1-\frac{1}{2}} = 6\left(1-\frac{1}{2^{n}} \right) 30693072=112n \Rightarrow \frac{3069}{3072} = 1 -\frac{1}{2^{n} } 12n=130693072\Rightarrow \frac {1}{2^{n}}= 1 -\frac{3069}{3072} =11024= \frac{1}{1024} or 2n=10242^{n}= 1024 =210 = 2^{10}, which gives n=10n= 10.