Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

How many terms of the AP : 9, 17, 25, ..... must be taken to give a sum of 636?

Answer

Let there be nn terms of this A.P.
For this A.P.,
a=9a = 9 and d=a2a1=179=8d = a_2 − a_1 = 17 − 9 = 8
Sn=n2[2a+(n1)d]S_n =\frac n2 [2a + (n-1)d]

636=n2[2×9+(n1)8]636 =\frac n2 [2\times 9 + (n-1)8]

636=n2[18+(n1)8]636 =\frac n2 [18 + (n-1)8]
636=n[9+4n4]636 = n[9 + 4n − 4]
636=n(4n+5)636 = n(4n + 5)
4n2+5n636=04n^2 + 5n − 636 = 0
4n2+53n48n636=04n^2 + 53n − 48n − 636 = 0
n(4n+53)12(4n+53)=0n(4n + 53) − 12 (4n + 53) = 0
(4n+53)(n12)=0(4n + 53) (n − 12) = 0
Either 4n+53=04n + 53 = 0 or n12=0n − 12 = 0
𝑛=534𝑛=−\frac {53}{4} or n=12n = 12
n can not be −534\frac {53}{4} . As the number of terms can neither be negative nor fractional.

Therefore, n=12n = 12.