Solveeit Logo

Question

Question: How many numbers can be formed from the digits 1, 2, 3, 4 when the repetition is not allowed....

How many numbers can be formed from the digits 1, 2, 3, 4 when the repetition is not allowed.

A

4P44P_{4}

B

4P34P_{3}

C

4P1+4P2+4P34P_{1} +^{4} ⥂ P_{2} +^{4} ⥂ P_{3}

D

4P1+4P2+4P3+4P44P_{1} +^{4} ⥂ P_{2} +^{4} ⥂ P_{3} +^{4} ⥂ P_{4}

Answer

4P1+4P2+4P3+4P44P_{1} +^{4} ⥂ P_{2} +^{4} ⥂ P_{3} +^{4} ⥂ P_{4}

Explanation

Solution

Number of 1 digit numbers =4P1=^{4} ⥂ P_{1}

Number of 2 digit numbers=4P2=^{4} ⥂ P_{2}

Number of 3 digit numbers=4P3=^{4} ⥂ P_{3}

Number of 4 digit numbers=4P4=^{4} ⥂ P_{4}

Hence the required number of ways

=4P1+4P2+4P3+4P4=^{4} ⥂ P_{1} +^{4} ⥂ P_{2} +^{4} ⥂ P_{3} +^{4} ⥂ P_{4}.