Solveeit Logo

Question

Question: How many milliliters of 0.230 M \(\text{N}{{\text{a}}_{2}}\text{S}\) are needed to react with 30.00 ...

How many milliliters of 0.230 M Na2S\text{N}{{\text{a}}_{2}}\text{S} are needed to react with 30.00 mL of 0.513 M AgNO3\text{AgN}{{\text{O}}_{3}} , according to the following balanced equation?
Na2S(aq)+2AgNO3(aq)2NaNO3(aq)+Ag2S(s)\text{N}{{\text{a}}_{\text{2}}}\text{S(aq)}+2\text{AgN}{{\text{O}}_{\text{3}}}\text{(aq)}\to 2\text{NaN}{{\text{O}}_{\text{3}}}\text{(aq)}+\text{A}{{\text{g}}_{\text{2}}}\text{S(s)}

Explanation

Solution

By using the stoichiometry of the reaction, we can find out the number of moles of Na2S\text{N}{{\text{a}}_{2}}\text{S} needed to react with 30.00 mL of 0.513 M AgNO3\text{AgN}{{\text{O}}_{3}}. The number of moles is related to volume as given below:
Molarity (M)=number of moles (n)volume in litres (V)\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}

Complete answer:
Stoichiometry of the chemical reactions is used to find the amount of reactant or product that is required or produced respectively with the help of their coefficient values in a balanced chemical equation.
According to the balanced chemical equation in the given question, 1 mole of Na2S\text{N}{{\text{a}}_{2}}\text{S} is reacting with 2 moles of AgNO3\text{AgN}{{\text{O}}_{3}} to produce 2 moles of NaNO3\text{NaN}{{\text{O}}_{3}} and 1 mole of Ag2S\text{A}{{\text{g}}_{\text{2}}}\text{S}.
Na2S(aq)+2AgNO3(aq)2NaNO3(aq)+Ag2S(s)\text{N}{{\text{a}}_{\text{2}}}\text{S(aq)}+2\text{AgN}{{\text{O}}_{\text{3}}}\text{(aq)}\to 2\text{NaN}{{\text{O}}_{\text{3}}}\text{(aq)}+\text{A}{{\text{g}}_{\text{2}}}\text{S(s)}
First, we need to find out the number of moles of Na2S\text{N}{{\text{a}}_{2}}\text{S} and AgNO3\text{AgN}{{\text{O}}_{3}} by using this formula:
Molarity (M)=number of moles (n)volume in litres (V)\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}
We are given 30.00 mL of 0.513 M AgNO3\text{AgN}{{\text{O}}_{3}}.

& \therefore 0.513\text{ mol }{{\text{L}}^{-1}}=\dfrac{{{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}}{0.0300\text{ L}} \\\ & \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.513\text{ mol }{{\text{L}}^{-1}}\times 0.0300\text{ L} \\\ & \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.01539\text{ mol} \\\ \end{aligned}$$ Since 2 moles of $\text{AgN}{{\text{O}}_{3}}$ is reacting with 1 mole of $\text{N}{{\text{a}}_{2}}\text{S}$. Therefore, 1 mole $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2} \right)$ moles of $\text{N}{{\text{a}}_{2}}\text{S}$. And, 0.01539 moles of $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2}\times 0.01539 \right)$ i.e. 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$. So, now we need to find the volume (in mL) of 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$ present in its 0.230 M solution. $$\begin{aligned} & 0.230\text{ mol }{{\text{L}}^{-1}}=\dfrac{0.007695\text{ mol}}{{{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}} \\\ & \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=\dfrac{0.007695\text{ mol}}{0.230\text{ mol }{{\text{L}}^{-1}}} \\\ & \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=0.03346\text{ L} \\\ & \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=33.46\text{ mL} \\\ \end{aligned}$$ Hence, 33.46 milliliters of 0.230 M $\text{N}{{\text{a}}_{2}}\text{S}$ are needed to react with 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$. **Note:** The chemical equation should always be balanced before performing the stoichiometric calculations and the number of molecules of reactant or products involved is expressed in terms of moles.