Solveeit Logo

Question

Question: How many kilograms of wet \({\text{NaOH}}\) containing \(10\% \) water are required to prepare \(60{...

How many kilograms of wet NaOH{\text{NaOH}} containing 10%10\% water are required to prepare 60 litre60{\text{ litre}} of a 0.5 M0.5{\text{ M}} solution?
A. 1.23 kg1.23{\text{ kg}}
B. 1.13 kg1.13{\text{ kg}}
C. 1.33 kg1.33{\text{ kg}}
D. 1.24 kg1.24{\text{ kg}}

Explanation

Solution

Follow the given steps to calculate the kilograms of wet NaOH{\text{NaOH}} containing 10%10\% water required to prepare 60 litre60{\text{ litre}} of a 0.5 M0.5{\text{ M}} solution.
1Calculate the number of moles of NaOH{\text{NaOH}} in 60 litre60{\text{ litre}} of solution.
2Calculate the amount of NaOH{\text{NaOH}} in the calculated number of moles of NaOH{\text{NaOH}} using the molar mass.
3As the water contained in NaOH{\text{NaOH}} is 10%10\% , calculate the kilograms of pure NaOH{\text{NaOH}} in it.

Complete step by step answer:
Calculate the number of moles of NaOH{\text{NaOH}} in 60 litre60{\text{ litre}} of solution as follows:
The molarity of the NaOH{\text{NaOH}} solution is 0.5 M0.5{\text{ M}}. The molarity of a solution is the number of moles of solute in 1 litre1{\text{ litre}} of solution. Thus, the molarity of the NaOH{\text{NaOH}} solution is 0.5 mol litere10.5{\text{ mol liter}}{{\text{e}}^{ - 1}}.
Calculate the number of moles NaOH{\text{NaOH}} in 60 litre60{\text{ litre}} of solution using the relation as follows:
Number of moles=Molarity×Volume of solution{\text{Number of moles}} = {\text{Molarity}} \times {\text{Volume of solution}}
Substitute 0.5 mol litere10.5{\text{ mol liter}}{{\text{e}}^{ - 1}} for the molarity of the NaOH{\text{NaOH}} solution, 60 litre60{\text{ litre}} for the volume of the solution. Thus,
Number of moles of NaOH=0.5 mol litre1×60 litre{\text{Number of moles of NaOH}} = 0.5{\text{ mol }}{{{\text{litr}}{{\text{e}}^{ - 1}}}} \times 60{\text{ }}{{{\text{litre}}}}
Number of moles of NaOH=30 mol{\text{Number of moles of NaOH}} = 30{\text{ mol}}
Thus, the number of moles of NaOH{\text{NaOH}} in 60 litre60{\text{ litre}} of solution are 30 mol30{\text{ mol}}.
Step 2:
Calculate the molar mass of NaOH{\text{NaOH}} as follows:
Molar mass of NaOH=(1×Atomic mass of Na)+(1×Atomic mass of O)+(1×Atomic mass of H){\text{Molar mass of NaOH}} = \left( {{\text{1}} \times {\text{Atomic mass of Na}}} \right) + \left( {{\text{1}} \times {\text{Atomic mass of O}}} \right) + \left( {{\text{1}} \times {\text{Atomic mass of H}}} \right)
Molar mass of NaOH=(1×23)+(1×16)+(1×1){\text{Molar mass of NaOH}} = \left( {1 \times 23} \right) + \left( {1 \times 16} \right) + \left( {1 \times 1} \right)
Molar mass of NaOH=23+16+1{\text{Molar mass of NaOH}} = 23 + 16 + 1
Molar mass of NaOH=40 g mol1{\text{Molar mass of NaOH}} = 40{\text{ g mo}}{{\text{l}}^{ - 1}}
Thus, the molar mass of NaOH{\text{NaOH}} is 40 g mol140{\text{ g mo}}{{\text{l}}^{ - 1}}.
Step 3:
Calculate the amount of NaOH{\text{NaOH}} in 30 mol30{\text{ mol}} of NaOH{\text{NaOH}} as follows:
1 mol1{\text{ mol}} of a substance contains an amount of a substance in grams equal to its molar mass.
Thus, 1 mol1{\text{ mol}} of NaOH{\text{NaOH}} contains 40 g40{\text{ g}} of NaOH{\text{NaOH}}.
Thus, 30 mol30{\text{ mol}} of NaOH{\text{NaOH}} contains,
Amount of NaOH=30 mol NaOH×40 g NaOH1 mol NaOH{\text{Amount of NaOH}} = 30{\text{ }}{{{\text{mol NaOH}}}} \times \dfrac{{40{\text{ g NaOH}}}}{{{\text{1 }}{{{\text{mol NaOH}}}}}}
Amount of NaOH=1200 g NaOH=1200×103 kg NaOH{\text{Amount of NaOH}} = 1200{\text{ g NaOH}} = 1200 \times {10^{ - 3}}{\text{ kg NaOH}}
Thus, the amount of NaOH{\text{NaOH}} in 30 mol30{\text{ mol}} of NaOH{\text{NaOH}} is 1200×103 kg1200 \times {10^{ - 3}}{\text{ kg}}.
Step 4:
Calculate the kilograms of NaOH{\text{NaOH}} containing 10%10\% water required to prepare 60 litre60{\text{ litre}} of a 0.5 M0.5{\text{ M}} solution as follows:
The NaOH{\text{NaOH}} contains 10%10\% water. Thus, in 100 kg100{\text{ kg}} NaOH{\text{NaOH}}, pure NaOH{\text{NaOH}} is (10010)=90 kg\left( {100 - 10} \right) = 90{\text{ kg}}.
100 kg100{\text{ kg}} NaOH{\text{NaOH}} contains 90 kg90{\text{ kg}} pure NaOH{\text{NaOH}}
Thus, 1200×103 kg1200 \times {10^{ - 3}}{\text{ kg}} NaOH{\text{NaOH}} contains,
NaOH (kg)=100 kg×1200×103 kg90 kg{\text{NaOH }}\left( {{\text{kg}}} \right) = \dfrac{{100{\text{ }}{{{\text{kg}}}} \times 1200 \times {{10}^{ - 3}}{\text{ kg}}}}{{90{\text{ }}{{{\text{kg}}}}}}
NaOH (kg)=1.33 kg{\text{NaOH }}\left( {{\text{kg}}} \right) = 1.33{\text{ kg}}
Thus, the kilograms of NaOH{\text{NaOH}} containing 10%10\% water required to prepare 60 litre60{\text{ litre}} of a 0.5 M0.5{\text{ M}} solution are 1.33 kg1.33{\text{ kg}}.

So, the correct answer is OptionC.

Note:
The NaOH{\text{NaOH}} contains 10%10\% water. Thus, the pure NaOH{\text{NaOH}} is 90%90\% . Thus, calculate the kilograms of pure NaOH{\text{NaOH}}.