Solveeit Logo

Question

Question: How many grams of hydrogen is present in \[8.5g{\text{ }}NH3\]? (a) \(1.5\) (b) \(0.5\) (c) ...

How many grams of hydrogen is present in 8.5g NH38.5g{\text{ }}NH3?
(a) 1.51.5
(b) 0.50.5
(c) 0.080.08
(d) None of the above

Explanation

Solution

The gram atoms is the atomic mass of a substance expressed in grams. In a compound, gram atom of a substance can be calculated as:
Gram atom= Atomic mass of the substance× number of moles of compoundGram{\text{ }}atom = {\text{ }}Atomic{\text{ }}mass{\text{ }}of{\text{ }}the{\text{ }}substance \times {\text{ }}number{\text{ }}of{\text{ }}moles{\text{ }}of{\text{ }}compound

Complete step by step answer:
As we know that the atomic mass of an element is the number of times an atom of the element is heavier than an atom of a carbon taken as1212 . The atomic mass of an atom expressed grams is called Gram Atomic Mass. The amount of the element is called one gram atom. A mole is defined as that amount of the substance which has mass equal to gram atomic mass if the substance is atomic or gram molecules are masked if the substance is molecular.
i.e. Number of moles of substance=Given mass of substanceMolecular mass of substance Number{\text{ }}of{\text{ }}moles{\text{ }}of{\text{ }}substance = \dfrac{{Given{\text{ }}mass{\text{ }}of{\text{ }}substance}}{{Molecular{\text{ }}mass{\text{ }}of{\text{ }}substance}}{\text{ }} -(i)
Molecular mass of a substance is the number of times the molecules of the substance are heavier than 1/12th1/12th mass of an atom of carbon12carbon - 12 isotope.
The molecular mass of substance expressed in grams is called gram molecular mass.
Now firstly we have to calculate the molecular mass of NH3N{H_3} which can be calculated as:
molar mass of NH3= 1× Atomic mass of N + 3× Atomic mass of Hmolar{\text{ }}mass{\text{ }}of{\text{ }}N{H_3} = {\text{ }}1 \times {\text{ }}Atomic{\text{ }}mass{\text{ }}of{\text{ }}N{\text{ }} + {\text{ }}3 \times {\text{ }}Atomic{\text{ }}mass{\text{ }}of{\text{ }}H
We know that gram atomic mass of NN is 14 gram14{\text{ }}gram and that of HH is11 .So on putting values in above equation, we get
Molar mass of NH3= 1× 14+ 3×1 =17gMolar{\text{ }}mass{\text{ }}of{\text{ }}N{H_3} = {\text{ }}1 \times {\text{ }}14 + {\text{ }}3 \times 1{\text{ }} = 17g
The given mass of NH3N{H_3} is 8.5 g8.5{\text{ }}g. So the number of moles of NH3N{H_3} present can be calculated by equation (i), we get
Number of moles of NH3=given mass of NH3Molar mass of NH3  Number of moles of NH3=8.5g17g=0.5mole  Number{\text{ }}of{\text{ }}moles{\text{ }}of{\text{ }}N{H_3} = \dfrac{{given{\text{ }}mass{\text{ }}of{\text{ }}N{H_3}}}{{Molar{\text{ }}mass{\text{ }}of{\text{ }}N{H_3}}}{\text{ }} \\\ Number{\text{ }}of{\text{ }}moles{\text{ }}of{\text{ }}N{H_3} = \dfrac{{8.5g}}{{17g}} = 0.5mole \\\
The gram atoms of an element present in the molecule can be calculated as:
Gram atoms of substance=Atomic mass of the element×Number of moles of molecules                                    Gram{\text{ }}atoms{\text{ }}of{\text{ }}substance = Atomic{\text{ }}mass{\text{ }}of{\text{ }}the{\text{ }}element \times Number{\text{ }}of{\text{ }}moles{\text{ }}of{\text{ }}molecules\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(ii)
We have to find the gram atoms of hydrogen in NH3N{H_3} having atomic mass 11. Since 33 atoms of hydrogen is present, so the combined atomic mass of hydrogen is 33 and the number of moles of NH3N{H_3} present is 0.5 mole0.5{\text{ }}mole . So putting value in equation (ii) we get
Gram atom of H in NH3= 3×0.5= 1.5 gram atomsGram{\text{ }}atom{\text{ }}of{\text{ }}H{\text{ }}in{\text{ }}N{H_3} = {\text{ }}3 \times 0.5 = {\text{ }}1.5{\text{ }}gram{\text{ }}atoms
So 1.5 g atom of H is present in 8.5 g of NH31.5{\text{ }}g{\text{ }}atom{\text{ }}of{\text{ }}H{\text{ }}is{\text{ }}present{\text{ }}in{\text{ }}8.5{\text{ }}g{\text{ }}of{\text{ }}N{H_3} .

So, the correct answer is Option A.

Note: Number of gram atoms and number of atoms in a substance both are different things number of atoms can be expressed as
Number  Of  Atoms=6.022×1023×number  of  gramatomsNumber\; Of \;Atoms = 6.022{{ \times }}{10^2}^3{{ \times }}number\;of\;gramatoms