Question
Question: How many different words can be formed from the letters of the word GANESHPURI when: How many word...
How many different words can be formed from the letters of the word GANESHPURI when:
How many words of 5 letters each can be formed each containing 3 consonants and 2 vowels?
Solution
Hint: First, figure out how many consonants and vowels are there in the word GANESHPURI and then write the consonants and the vowels separately. Use the concept of permutation and combination to select 3 letters from consonants and 2 letters from vowels.
Before proceeding with the question, we must know the important formulas of permutation and combination that will be used to solve this question.
Let us assume we have n different letters from which we have to select r letters where r{}^{n}{{C}{r}}=\dfrac{n!}{r!\left( n-r \right)!}.....................\left( 1 \right)Ifwehaveawordwhichcontainsndifferentlettersinit,thenthenumberofwaysinwhichwecanrearrangetheselettersisequalton!...........\left( 2 \right).Inthisquestion,wearegiventhewordGANESHPURI.Fromthisword,wehavetofindthenumberofwordsthatarehaving3consonantsand2vowels.LetusfirstseparateouttheconsonantsandthevowelsfromthewordGANESHPURI.InthewordGANESHPURI,theconsonantsareG,N,S,H,P,R.So,there6consonantsinthewordGANESHPURI.Inthequestion,itisgiventhatwehavetoselect3consonantsoutofthese6consonants.Substitutingn=6andr=3intheformula\left( 1 \right),thenumberofwaysofselecting3consonantsis,\begin{aligned}
& {}^{6}{{C}{3}}=\dfrac{6!}{3!\left( 6-3 \right)!} \\
& \Rightarrow \dfrac{6!}{3!3!} \\
& \Rightarrow \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1\times 3\times 2\times 1} \\
& \Rightarrow 20............\left( 3 \right) \\
\end{aligned}InthewordGANESHPURI,thevowelsareA,E,U,I.So,thereare4vowelsinthewordGANESHPURI.Inthequestion,itisgiventhatwehavetoselect2vowelsoutofthese4vowels.Substitutingn=4andr=2intheformula\left( 1 \right),thenumberofwaysofselecting2consonantsis,\begin{aligned}
& {}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!} \\
& \Rightarrow \dfrac{4!}{2!2!} \\
& \Rightarrow \dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1} \\
& \Rightarrow 6............\left( 4 \right) \\
\end{aligned}Thenumberofwordsthatarehaving3consonantsand2vowelscanbefoundoutbymultiplyingequation\left( 3 \right)andequation\left( 4 \right)and are equal to $$20\times 6=120$$.
So, the number of ways of selecting these5letterwordsisequalto120.Also,allthesewordscanberearrangedwithinthemselves.Thenumberofwordsthatcanbeformedbyrearrangingasingle5letterwordcanbefoundoutbysubstitutingn=5inequation\left( 2 \right)andareequalto5!=5\times 4\times 3\times 2\times 1=120.Asforeachofthe120selectedwords,thereare120rearrangementspossible,therefore,thetotalnumberofwordsisequalto120\times 120=14400$.
Note: There is a possibility of committing a mistake while calculating the final answer. There is a possibility that one does not rearrange the 5 letter words which we got after selecting 3 consonants and 2 vowels. So, there is a possibility that one does not multiply 120 by 5! which will lead us to an incorrect answer.