Solveeit Logo

Question

Mathematics Question on permutations and combinations

How many different words can be formed by jumbling the letters in the word in which no two SS are adjacent ?

A

86C47C48\cdot\,^6C_4\cdot\,^7C_4

B

678C46\cdot 7 \cdot\,^8C_4

C

687C46\cdot 8\cdot\,^7C_4

D

76C48C47\cdot\,^6C_4\cdot\,^8C_4

Answer

76C48C47\cdot\,^6C_4\cdot\,^8C_4

Explanation

Solution

First of all arrange M,I,I,I,I,P,PM, I, I, I, I, P, P This can be done in 7!4!2!\frac{7\,!}{4\,!\, 2\,!} ways. ×M×I×I×I×I×P×P×\times M \times I\times I\times I\times I\times P\times P\times If we place is SS at any of the XX places then no two S??S?? are together. \therefore total number of ways =7!4!2!8C4=\frac{7\,!}{4\,!\, 2\,!}\cdot^{8}C_{4} =7×6C4×8C4=7\times\,^{6}C_{4}\times\,^{8}C_{4} ways.