Solveeit Logo

Question

Question: How many ‘α and β’ particles will be emitted when \(90Th^{234}\) changes into\(84Po^{218}\)...

How many ‘α and β’ particles will be emitted when

90Th23490Th^{234} changes into84Po21884Po^{218}

A

2 and 6

B

4 and 2

C

2 and 4

D

6 and 2

Answer

4 and 2

Explanation

Solution

The change is; 90Th234Parent84Po218End product\underset{\text{Parent}}{90Th^{234}} \rightarrow \underset{\text{End product}}{84Po^{218}}

Decrease in mass=(234218)=16amu= (234 - 218) = 16amu

Mass of 1 α-particle =4amu= 4amu

Therefore, number of α-particles emitted =164=4= \frac{16}{4} = 4

Number of β-particles emitted

=2×No. of αparticles emitted(atomic no. of parentAt. no. of product)=2×4(9084)=2= 2 \times \text{No. of }\alpha\text{particles emitted} - (\text{atomic no. of parent} - \text{At. no. of product}) = 2 \times 4 - (90 - 84) = 2

Hence number of α-particles = 4 and number of β-particles

= 2