Solveeit Logo

Question

Question: How does the bond energy for the formation of NaCl(s) take place?...

How does the bond energy for the formation of NaCl(s) take place?

Explanation

Solution

In the above question, we have to find out how the bond energy for the formation of NaCl takes place. We have to write a series of balanced chemical equations along with heat released in each step to get the desired lattice enthalpy.

Complete step by step solution:
Sodium is metal and chlorine is a diatomic gas in room temperature and pressure but in NaCl, sodium and chlorine ions are present. So, we have to basically find out the following reaction:
Na(s)sublimationNa(l)1st ionizationNa + (g){\text{Na(s)}}\xrightarrow{{{\text{sublimation}}}}{\text{Na(l)}}\xrightarrow{{{\text{1st ionization}}}}{\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g)}}
12Cl2(g)12 bond breakingCl(g)1st electron affinityCl - (g)\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}}\xrightarrow{{\dfrac{{\text{1}}}{{\text{2}}}{\text{ bond breaking}}}}{\text{Cl(g)}}\xrightarrow{{{\text{1st electron affinity}}}}{\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}}
The standard heat of formation of NaCl is given as:
NaCl(s)Na(s) + 12Cl2ΔHf,NaCl0 = 411{\text{NaCl(s)}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{{\Delta H}}_{{\text{f,NaCl}}}^{\text{0}}{\text{ = 411}} kJ …………..(1)
The enthalpy change during sublimation of sodium is given by:
Na(s)Na(g),ΔHsub,Na = 107{\text{Na(s)}} \to {{Na(g),\Delta }}{{\text{H}}_{{\text{sub,Na}}}}{\text{ = 107}} kJ …………..(2)
The first ionization energy of Na, that is, removal of one electron from sodium atom is given by:
Na(g)Na + (g) + e - ,IE1,Na(g) = 502{\text{Na(g)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}}{\text{,I}}{{\text{E}}_{{\text{1,Na(g)}}}}{\text{ = 502}} KJ…………..(3)
Now let us look at the enthalpy change when chlorine molecule breaks down to chlorine atom which is given by:
12Cl2(g)Cl(g),12ΔHbond,Cl2(g) = 12×242=121\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{Cl(g),}}\dfrac{{\text{1}}}{{\text{2}}}{{\Delta }}{{\text{H}}_{{\text{bond,C}}{{\text{l}}_{\text{2}}}{\text{(g)}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{{ \times 242 = 121}} kJ…………..(4)
The enthalpy change when chlorine gains an electron is given by:
Cl(g) + e - Cl - (g),EA1,Cl(g) = - 355{\text{Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g),E}}{{\text{A}}_{{\text{1,Cl(g)}}}}{\text{ = - 355}} kJ…………..(5)
We have to find the enthalpy change ( ΔHlattice{{\Delta }}{{\text{H}}_{{\text{lattice}}}} ) during-
Na + (g) + Cl - (g)NaCl(s){\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}} …………..(6)
If we add equation 1, 2, 3,4 and 5, we will get:
NaCl(s) + Na(s) + Na(g) + 12Cl2(g) + Cl(g) + e - Na(s) + 12Cl2(g)+Na(g)+Na + (g) + e - +Cl(g)+Cl - (g){\text{NaCl(s) + Na(s) + Na(g) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g) + Cl(g) + }}{{\text{e}}^{\text{ - }}} \to {\text{Na(s) + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}(g) + {\text{Na(g)}} + {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + }}{{\text{e}}^{\text{ - }}} + {\text{Cl(g)}} + {\text{C}}{{\text{l}}^{\text{ - }}}{\text{(g)}}
Simplifying the above equation, we get:
NaCl(s)Na + (g) + Cl - (g){\text{NaCl(s)}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}}
ΔH=411+107+502+121355=786{{\Delta H = 411 + 107 + 502 + 121 - 355 = 786}} kJ
Hence, for the reaction
Na + (g) + Cl - (g)NaCl(s){\text{N}}{{\text{a}}^{\text{ + }}}{\text{(g) + C}}{{\text{l}}^{\text{ - }}}{\text{(g)}} \to {\text{NaCl(s)}}
ΔHlattice=ΔH=786{{\Delta }}{{\text{H}}_{{\text{lattice}}}}{{ = - \Delta H = - 786}} kJ
Hence, the bond energy for the formation of NaCl(s) is  - 786{\text{ - 786}} kJ.

Note:
The lattice energy of a crystalline solid is a measure of the energy released when ions are combined to make a compound. It is a measure of the cohesive forces that bind ions. Lattice energy is relevant to many practical properties which includes solubility, hardness, and volatility.