Solveeit Logo

Question

Question: How do you write the taylor series for the function \(f\left( x \right)=\sqrt{x}\) at \(a=16\)?...

How do you write the taylor series for the function f(x)=xf\left( x \right)=\sqrt{x} at a=16a=16?

Explanation

Solution

We start solving the problem by recalling the fact that the taylor series of the function f(x)f\left( x \right) at x=ax=a is defined as f(x)=f(a)+f(a)×(xa)1!+f(a)×(xa)22!+.......fn(a)×(xa)nn!+.....f\left( x \right)=f\left( a \right)+{{f}^{'}}\left( a \right)\times \dfrac{\left( x-a \right)}{1!}+{{f}^{''}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{2}}}{2!}+.......{{f}^{n}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{n}}}{n!}+...... We then use this result for the given function at a=16a=16. We then find the general form of all the derivatives of the function f(x)f\left( x \right) and substitute in the formula. We then make the necessary calculations to get the required answer.

Complete step-by-step solution:
According to the problem, we are asked to find the taylor series for the function f(x)=xf\left( x \right)=\sqrt{x} at a=16a=16 and also the radius of convergence.
We know that the taylor series of the function f(x)f\left( x \right) at x=ax=a is defined as f(x)=f(a)+f(a)×(xa)1!+f(a)×(xa)22!+.......fn(a)×(xa)nn!+.....f\left( x \right)=f\left( a \right)+{{f}^{'}}\left( a \right)\times \dfrac{\left( x-a \right)}{1!}+{{f}^{''}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{2}}}{2!}+.......{{f}^{n}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{n}}}{n!}+......
Now, let us use this result to find the Taylor series for the given function at a=16a=16.
f(x)=f(16)+f(16)×(x16)1!+f(16)×(x16)22!+.......fn(16)×(x16)nn!+.....f\left( x \right)=f\left( 16 \right)+{{f}^{'}}\left( 16 \right)\times \dfrac{\left( x-16 \right)}{1!}+{{f}^{''}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......{{f}^{n}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+..... ---(1).
Now, let us find the derivatives of the functions f(x)f\left( x \right).
We have f(x)=xf\left( x \right)=\sqrt{x}.
f(x)=d(x12)dx\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx} ---(2).
We know that d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}. Let us use this result in equation (2).
f(x)=12x12\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} ---(3).
Now, f(x)=d(12x12)dx{{f}^{''}}\left( x \right)=\dfrac{d\left( \dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \right)}{dx}.
f(x)=14x32\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}} ---(4).
Now, f3(x)=d(14x32)dx{{f}^{3}}\left( x \right)=\dfrac{d\left( \dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}} \right)}{dx}.
f3(x)=38x52\Rightarrow {{f}^{3}}\left( x \right)=\dfrac{3}{8}{{x}^{\dfrac{-5}{2}}} ---(5).
Now, f4(x)=d(38x52)dx{{f}^{4}}\left( x \right)=\dfrac{d\left( \dfrac{3}{8}{{x}^{\dfrac{-5}{2}}} \right)}{dx}.
f4(x)=1516x72\Rightarrow {{f}^{4}}\left( x \right)=\dfrac{-15}{16}{{x}^{\dfrac{-7}{2}}} ---(6).
Similarly, we get fn(x)=(1)n(2n1)(2n)x2n+32{{f}^{n}}\left( x \right)=\dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{x}^{\dfrac{-2n+3}{2}}} ---(7).
Now, let us substitute equations (2), (3), (4), (5), (6), and (7) in equation (1).
f(x)=16+(12(16)12)×(x16)1!+(14(16)32)×(x16)22!+.......((1)n(2n1)(2n)(16)2n+32)×(x16)nn!+.....f\left( x \right)=\sqrt{16}+\left( \dfrac{1}{2}{{\left( 16 \right)}^{\dfrac{-1}{2}}} \right)\times \dfrac{\left( x-16 \right)}{1!}+\left( \dfrac{-1}{4}{{\left( 16 \right)}^{\dfrac{-3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+......
f(x)=4+(x16)8(x16)2512+.......((1)n(2n1)(2n)(16)2n+32)×(x16)nn!+.....\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+......
So, we have found the taylor series of the function f(x)f\left( x \right) at x=ax=a as
f(x)=4+(x16)8(x16)2512+.......((1)n(2n1)(2n)(16)2n+32)×(x16)nn!+.....\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+......

Note: We should perform each step carefully to avoid confusion and calculation mistakes. We should confuse between the variables a and x while solving this type of problem. We can also find the Maclaurin series for the given function f(x)f\left( x \right) by taking a=1a=1. Similarly, we can expect problems to find the Taylor series of the function g(x)=sin3xg\left( x \right)=\sin 3x.