Solveeit Logo

Question

Question: How do you write the Taylor series for \(f\left( x \right) = \cosh x\)?...

How do you write the Taylor series for f(x)=coshxf\left( x \right) = \cosh x?

Explanation

Solution

This problem deals with expansion of Taylor series of a given function. In mathematics, the Taylor series of a function is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.
The Taylor series of a function is defined as:
n=0fn(x0)n!(xx0)n\Rightarrow \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}

Complete step-by-step answer:
we know that the Taylor series of a function is defined, as given below:
n=0fn(x0)n!(xx0)n\Rightarrow \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}
Here the nn in fn(x0){f^n}\left( {{x_0}} \right) denotes the nth derivative of f(x)f(x), and the nn in (xx0)n{\left( {x - {x_0}} \right)^n} is the exponent or the power.
Here f(x)=coshxf(x) = \cosh x.
We are going to find the Taylor series of coshx\cosh x, but around x=0x = 0, then we set x0=0{x_0} = 0, and use the above definition.
Now finding the derivatives as shown below:
f(x)=coshx\Rightarrow f\left( x \right) = \cosh x, here when x=0x = 0, f(0)=cosh(0)=1f(0) = \cosh (0) = 1
f(0)=1\therefore f(0) = 1
Now the first derivative is:
f(x)=sinhx\Rightarrow f'\left( x \right) = \sinh x, here when x=0x = 0, f(0)=sinh(0)=0f'(0) = \sinh (0) = 0
f(0)=0\therefore f'(0) = 0
Now the second derivative is :
f(x)=coshx\Rightarrow f''\left( x \right) = \cosh x, here when x=0x = 0, f(0)=cosh(0)=1f''(0) = \cosh (0) = 1
f(0)=1\therefore f''(0) = 1
Now the third derivative is:
f(x)sinhx\Rightarrow f'''\left( x \right)\sinh x, here when x=0x = 0, f(0)=sinh(0)=0f'''(0) = \sinh (0) = 0
f(0)=0\therefore f'''(0) = 0
Now the fourth derivative is :
fIV(x)=coshx\Rightarrow {f^{IV}}\left( x \right) = \cosh x, here when x=0x = 0, fIV(0)=cosh(0)=1{f^{IV}}(0) = \cosh (0) = 1
fIV(0)=1\therefore {f^{IV}}(0) = 1
Now the fifth derivative is:
fV(x)sinhx\Rightarrow {f^V}\left( x \right)\sinh x, here when x=0x = 0, fV(0)=sinh(0)=0{f^V}(0) = \sinh (0) = 0
fV(0)=0\therefore {f^V}(0) = 0
Now the sixth derivative is :
fVI(x)=coshx\Rightarrow {f^{VI}}\left( x \right) = \cosh x, here when x=0x = 0, fVI(0)=cosh(0)=1{f^{VI}}(0) = \cosh (0) = 1
fVI(0)=1\therefore {f^{VI}}(0) = 1
And so on.
Now substituting these in the Taylor expansion formula, as shown:
n=0fn(0)n!(x0)n\Rightarrow \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( 0 \right)}}{{n!}}} {\left( {x - 0} \right)^n}
f(0)0!(x0)1+f(0)1!(x0)+f(0)2!(x0)2+f(0)3!(x0)3+fIV(0)4!(x0)4+fV(0)5!(x0)5+fVI(0)6!(x0)6+.....\Rightarrow \dfrac{{f\left( 0 \right)}}{{0!}}{\left( {x - 0} \right)^1} + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( {x - 0} \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{\left( {x - 0} \right)^3} + \dfrac{{{f^{IV}}\left( 0 \right)}}{{4!}}{\left( {x - 0} \right)^4} + \dfrac{{{f^V}\left( 0 \right)}}{{5!}}{\left( {x - 0} \right)^5} + \dfrac{{{f^{VI}}\left( 0 \right)}}{{6!}}{\left( {x - 0} \right)^6} + .....
Substituting the values of the derivatives, as shown:
11(x0)0+01!(x0)1+12!(x0)2+03!(x0)3+14!(x0)4+05!(x0)5+16!(x0)6+......\Rightarrow \dfrac{1}{1}{\left( {x - 0} \right)^0} + \dfrac{0}{{1!}}{\left( {x - 0} \right)^1} + \dfrac{1}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{0}{{3!}}{\left( {x - 0} \right)^3} + \dfrac{1}{{4!}}{\left( {x - 0} \right)^4} + \dfrac{0}{{5!}}{\left( {x - 0} \right)^5} + \dfrac{1}{{6!}}{\left( {x - 0} \right)^6} + ......
1+0+x22+0+x424+0+x6720+........\Rightarrow 1 + 0 + \dfrac{{{x^2}}}{2} + 0 + \dfrac{{{x^4}}}{{24}} + 0 + \dfrac{{{x^6}}}{{720}} + ........
The terms multiplied with zero, will be zero.
1+x22+x424+x6720+........\Rightarrow 1 + \dfrac{{{x^2}}}{2} + \dfrac{{{x^4}}}{{24}} + \dfrac{{{x^6}}}{{720}} + ........
coshx=1+x22+x424+x6720+........\therefore \cosh x = 1 + \dfrac{{{x^2}}}{2} + \dfrac{{{x^4}}}{{24}} + \dfrac{{{x^6}}}{{720}} + ........
For more accuracy we can find more derivatives and continue building up the series.

Final Answer: The Taylor series expansion of coshx=1+x22+x424+x6720+........\cosh x = 1 + \dfrac{{{x^2}}}{2} + \dfrac{{{x^4}}}{{24}} + \dfrac{{{x^6}}}{{720}} + ........

Note:
Please note that a Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function about a point. This is also known as a Maclaurin series.