Solveeit Logo

Question

Question: How do you write the expression in standard form \(a+ib\) given \({{\left( 1-i \right)}^{5}}\)?...

How do you write the expression in standard form a+iba+ib given (1i)5{{\left( 1-i \right)}^{5}}?

Explanation

Solution

The above given question is the mixture of the concept of the complex number and the binomial expansion. From the complex number we will use the concept that i=1i=\sqrt{-1} , hence i2=1{{i}^{2}}=-1, i3=1=i{{i}^{3}}=-\sqrt{-1}=-i, and i4=1{{i}^{4}}=1. Hence, after 4th{{4}^{th}} power of ii value of ii goes on repeating it as in the previous 4 sequences. And, from binomial expansion we will use the concept of expansion of (a+b)n{{\left( a+b \right)}^{n}} to expand (1i)5{{\left( 1-i \right)}^{5}} to that it can be written in standard form a+iba+ib. The expansion of (a+b)n{{\left( a+b \right)}^{n}} is given as nC0anb0+nC1an1b+nC2an2b2+nC3an3b3+........+nCna0bn{}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{b}^{3}}+........+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}.

Complete step by step answer:
We will use the concept of binomial expansion and complex numbers both to solve the above question.
We can see from the question that we have to express (1i)5{{\left( 1-i \right)}^{5}} in standard form a+iba+ib, and this is possible only if we write the expansion of (1i)5{{\left( 1-i \right)}^{5}}.
Since, we know that the binomial expansion of (a+b)n{{\left( a+b \right)}^{n}}is given as:
(a+b)n=nC0anb0+nC1an1b+nC2an2b2+nC3an3b3+........+nCna0bn{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{b}^{3}}+........+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}
So, we can similarly expand (1i)5{{\left( 1-i \right)}^{5}}, and we can see here a = 1, b = i-i and n = 5.
Thus, we can write (1i)5{{\left( 1-i \right)}^{5}} as:(1i)5=5C0×15×(i)0+5C1×14×(i)+5C2×13×(i)2+5C3×12×(i)3+5C4×1×(i)4+5C5×10×(i)5{{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}\times {{1}^{5}}\times {{\left( -i \right)}^{0}}+{}^{5}{{C}_{1}}\times {{1}^{4}}\times \left( -i \right)+{}^{5}{{C}_{2}}\times {{1}^{3}}\times {{\left( -i \right)}^{2}}+{}^{5}{{C}_{3}}\times {{1}^{2}}\times {{\left( -i \right)}^{3}}+{}^{5}{{C}_{4}}\times 1\times {{\left( -i \right)}^{4}}+{}^{5}{{C}_{5}}\times {{1}^{0}}\times {{\left( -i \right)}^{5}}
(1i)5=5C05C1×i+5C2×(i)25C3×(i)3+5C4×(i)45C5×(i)5\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times {{\left( i \right)}^{2}}-{}^{5}{{C}_{3}}\times {{\left( i \right)}^{3}}+{}^{5}{{C}_{4}}\times {{\left( i \right)}^{4}}-{}^{5}{{C}_{5}}\times {{\left( i \right)}^{5}}
Now, from complex number we know that i=1i=\sqrt{-1}, so we can write i2=1{{i}^{2}}=-1, i3=1=i{{i}^{3}}=-\sqrt{-1}=-i, i4=1{{i}^{4}}=1, also i5=1×i=i{{i}^{5}}=1\times i=i.
So, after substituting value of i,i2,i3,i4,i5i,{{i}^{2}},{{i}^{3}},{{i}^{4}},{{i}^{5}} in the above equation we will get:
(1i)5=5C05C1×i+5C2×(1)5C3×(i)+5C4×15C5×i\Rightarrow {{\left( 1-i \right)}^{5}}={}^{5}{{C}_{0}}-{}^{5}{{C}_{1}}\times i+{}^{5}{{C}_{2}}\times \left( -1 \right)-{}^{5}{{C}_{3}}\times \left( -i \right)+{}^{5}{{C}_{4}}\times 1-{}^{5}{{C}_{5}}\times i
We also know that nCr=n!r!×(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}.
So, 5C0=5!0!×(50)!=1{}^{5}{{C}_{0}}=\dfrac{5!}{0!\times \left( 5-0 \right)!}=1, 5C1=5!1!×(51)!=5!4!=5{}^{5}{{C}_{1}}=\dfrac{5!}{1!\times \left( 5-1 \right)!}=\dfrac{5!}{4!}=5, 5C2=5!2!×(52)!=5!2!×3!=5×42=10{}^{5}{{C}_{2}}=\dfrac{5!}{2!\times \left( 5-2 \right)!}=\dfrac{5!}{2!\times 3!}=\dfrac{5\times 4}{2}=10,
Similarly, 5C3=5!3!×(53)!=10{}^{5}{{C}_{3}}=\dfrac{5!}{3!\times \left( 5-3 \right)!}=10, 5C4=5{}^{5}{{C}_{4}}=5, and 5C5=1{}^{5}{{C}_{5}}=1.
So, after putting all of these we will get:
(1i)5=15×i+10×(1)10×(i)+5×11×i\Rightarrow {{\left( 1-i \right)}^{5}}=1-5\times i+10\times \left( -1 \right)-10\times \left( -i \right)+5\times 1-1\times i
(1i)5=15i10+10i+5i\Rightarrow {{\left( 1-i \right)}^{5}}=1-5i-10+10i+5-i
(1i)5=4+4i\Rightarrow {{\left( 1-i \right)}^{5}}=-4+4i

Hence, (1i)5{{\left( 1-i \right)}^{5}} in standard form is given as 4+4i-4+4i.

Note: Students are required to memorize the binomial expression formula. Also, note that we can write nCr{}^{n}{{C}_{r}} as nCnr{}^{n}{{C}_{n-r}} because they both are equal. nCr=nCnr{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}} will always helps us to easily simply nCr{}^{n}{{C}_{r}}.