Solveeit Logo

Question

Question: How do you write the expression \[4.4.4.4.4.4\] using exponents?...

How do you write the expression 4.4.4.4.4.44.4.4.4.4.4 using exponents?

Explanation

Solution

We need to write 4.4.4.4.4.44.4.4.4.4.4 in exponential form. We should first see the general form of writing the expressions of this type in exponential form and then we will try to use that on the given expression. Let us consider a.a.a.a.a.a.a.a.......an\underbrace {a.a.a.a.a.a.a.a.......a}_n, which means that the number aa is multiplied nn times. Now, we write this as an{a^n} in exponential form.

Complete step by step answer:
We are given 4.4.4.4.4.44.4.4.4.4.4 and we need to write this expression in exponential form.
Let us first see how many 44 are there in 4.4.4.4.4.44.4.4.4.4.4.
We see that 44 is multiplied 66 times.
Hence, we can write
4.4.4.4.4.4=4.4.4.4.4.46\Rightarrow 4.4.4.4.4.4 = \underbrace {4.4.4.4.4.4}_6
Now, using a.a.a.a.a.a.a.a.......an=an\underbrace {a.a.a.a.a.a.a.a.......a}_n = {a^n}, we have
4.4.4.4.4.4=4.4.4.4.4.46=46\Rightarrow 4.4.4.4.4.4 = \underbrace {4.4.4.4.4.4}_6 = {4^6}
Now, we know that 4=224 = {2^2}. So, we get
4.4.4.4.4.4=4.4.4.4.4.46=46=(22)6\Rightarrow 4.4.4.4.4.4 = \underbrace {4.4.4.4.4.4}_6 = {4^6} = {\left( {{2^2}} \right)^6}
Now, using the property (ab)c=abc{\left( {{a^b}} \right)^c} = {a^{bc}}, we have
4.4.4.4.4.4=4.4.4.4.4.46=46=(22)6\Rightarrow 4.4.4.4.4.4 = \underbrace {4.4.4.4.4.4}_6 = {4^6} = {\left( {{2^2}} \right)^6}
4.4.4.4.4.4=46=(22)6=22×6\Rightarrow 4.4.4.4.4.4 = {4^6} = {\left( {{2^2}} \right)^6} = {2^{2 \times 6}}
4.4.4.4.4.4=46=(22)6=212\Rightarrow 4.4.4.4.4.4 = {4^6} = {\left( {{2^2}} \right)^6} = {2^{12}}
4.4.4.4.4.4=46=212\therefore 4.4.4.4.4.4 = {4^6} = {2^{12}}
Hence, we can write 4.4.4.4.4.44.4.4.4.4.4 as 46{4^6} or 212{2^{12}} in the exponential form.

Note: The most common mistake we make while solving this type of problem is not counting the number of times the given number is multiplied correctly. Once we count the wrong number, we will reach the wrong answer. Also, to solve such types of questions, we need to be very thorough with all the properties of exponents.