Solveeit Logo

Question

Question: How do you write \(\tan \left( 2x \right)\) in terms of \(\sin x\)?...

How do you write tan(2x)\tan \left( 2x \right) in terms of sinx\sin x?

Explanation

Solution

To solve the above question, we need to use the trigonometric identity of the tangent function given by tan2x=2tanx1tan2x\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}. Then, since according to the above question we have to write tan(2x)\tan \left( 2x \right) in terms of sinx\sin x, we will substitute tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} into the identity tan2x=2tanx1tan2x\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} so as to get tan2x=2sinxcosxcos2xsin2x\tan 2x=\dfrac{2\sin x\cos x}{{{\cos }^{2}}x-{{\sin }^{2}}x}. Then we have to substitute the trigonometric identity cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x into the numerator and the trigonometric identity cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x} into the denominator, the expression for tan(2x)\tan \left( 2x \right) will get simplified and we will obtain the value of tan(2x)\tan \left( 2x \right) in terms of sinx\sin x.

Complete step by step answer:
We know that the trigonometric identity for tan(2x)\tan \left( 2x \right) is given by
tan2x=2tanx1tan2x\Rightarrow \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}
Now, we know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. On substituting this in the above identity, we get

& \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{1-{{\left( \dfrac{\sin x}{\cos x} \right)}^{2}}} \\\ & \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}}{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x}} \\\ & \Rightarrow \tan 2x=\dfrac{2\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}{{{\cos }^{2}}x-{{\sin }^{2}}x} \\\ \end{aligned}$$ On simplifying the numerator, we get $$\Rightarrow \tan 2x=\dfrac{2\sin x\cos x}{{{\cos }^{2}}x-{{\sin }^{2}}x}........\left( i \right)$$ Now, we know the trigonometric identity which is given by $\Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1$ On subtracting ${{\sin }^{2}}x$ from both the sides of the above equation, we get $\begin{aligned} & \Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x-{{\sin }^{2}}x=1-{{\sin }^{2}}x \\\ & \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x........\left( ii \right) \\\ \end{aligned}$ Now, on taking the square root on both the sides of the above equation, we get $\Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x}........\left( iii \right)$ Now, we substitute the above equations (ii) and (iii) into the identity (i) to get $$\begin{aligned} & \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-{{\sin }^{2}}x-{{\sin }^{2}}x} \\\ & \Rightarrow \tan 2x=\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x} \\\ \end{aligned}$$ **Hence, we have finally obtained $\tan \left( 2x \right)$ in terms of $\sin x$ as $$\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{1-2{{\sin }^{2}}x}$$.** **Note:** For solving these types of questions, we must remember different trigonometric identities, the double angle formulae for the tangent, sine and cosine functions. We can also write $\tan \left( 2x \right)$ as $\dfrac{\sin \left( 2x \right)}{\cos \left( 2x \right)}$ and then substitute the identity $\sin 2x=2\sin x\cos x$ into the numerator and the identity $\cos 2x=1-2{{\sin }^{2}}x$ into the denominator to directly get $\tan \left( 2x \right)=\dfrac{2\sin x\cos x}{1-2{{\sin }^{2}}x}$. Then on substituting $\cos x=\sqrt{1-{{\sin }^{2}}x}$ into the numerator, we will obtain the final expression.