Solveeit Logo

Question

Question: How do you verify the identity \( \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} \) ?...

How do you verify the identity tan(x+45)=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} ?

Explanation

Solution

Hint : We have to first use the associative law of ratio tan. We use the formula of tan(a+b)=tana+tanbtanatanb\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} to put the values of a=45,b=xa=45,b=x . We can also verify it using arbitrary values as x=45x=45 .

Complete step-by-step answer :
We have to verify the identity tan(x+45)=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} by using the laws of associative angles.
We know that tan(a+b)=tana+tanbtanatanb\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} .
We have to replace the values in the formula to verify the identity tan(x+45)=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} .
We replace it with a=45,b=xa=45,b=x in tan(a+b)=tana+tanbtanatanb\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} .
Putting the values, we get tan(45+x)=tan45+tanxtan45tanx\tan \left( 45+x \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x} .
Now we know that the trigonometric ratio tan at the value of 45 gives tan45=1\tan 45=1 .
We put the value and get
tan(x+45)=tan45+tanxtan45tanx=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x}=\dfrac{1+\tan x}{1-\tan x} .
Thus, proved that tan(x+45)=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} .
We can also take an arbitrary value for x=45x=45 .
We put the value in the expression of tan(x+45)=1+tanx1tanx\tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} .
The left-hand side of the expression becomes tan(45+45)=tan90=undefined\tan \left( 45+45 \right)=\tan 90=\text{undefined}.
The right-hand side of the expression becomes 1+tanx1tanx=1+tan451tan45=1+111=undefined\dfrac{1+\tan x}{1-\tan x}=\dfrac{1+\tan 45}{1-\tan 45}=\dfrac{1+1}{1-1}=\text{undefined}
Thus, it is also verified.

Note : We need to remember that the additional value for the ratio tan comes from the associative rules of sin and cos. It is defined for any other values also.