Solveeit Logo

Question

Question: How do you verify the identity \[\tan \left( \dfrac{A}{2} \right)=\dfrac{\sin A}{1+\cos A}\]?...

How do you verify the identity tan(A2)=sinA1+cosA\tan \left( \dfrac{A}{2} \right)=\dfrac{\sin A}{1+\cos A}?

Explanation

Solution

We will verify the identity using trigonometric identities. We start solving from RHS by substituting the identities we have. We again simplify the expression until we arrive at the solution where we get LHS .

Complete step-by-step solution:
So we start solving from RHS
sinA1+cosA\dfrac{\sin A}{1+\cos A}
We have identities
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1.
Now we substitute A2\dfrac{A}{2} in place of θ\theta .
Then the two identities will look like
sin2(A2)=2sin(A2)cos(A2)\sin 2\left( \dfrac{A}{2} \right)=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)
And
cos2(A2)=2cos2(A2)1\cos 2\left( \dfrac{A}{2} \right)=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)-1
By simplifying them we will get
sinA=2sin(A2)cos(A2)\sin A=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)
And
cosA=2cos2(A2)1\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)-1
Now we substitute these identities in the RHS part.
RHS= sinA1+cosA\dfrac{\sin A}{1+\cos A}
Now we substitute above sin A and cos A in our RHS.
By substituting we will get
2sin(A2)cos(A2)1+2cos2(A2)1\Rightarrow \dfrac{2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}{1+2{{\cos }^{2}}\left( \dfrac{A}{2} \right)-1}
Now we have to simplify the expression.
By simplifying we will get
2sin(A2)cos(A2)2cos2(A2)\Rightarrow \dfrac{2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}{2{{\cos }^{2}}\left( \dfrac{A}{2} \right)}
Now we have cos(A2)\cos \left( \dfrac{A}{2} \right) on numerator and denominator. So we cancel them both in numerator and denominator we will get
2sin(A2)2cos(A2)\Rightarrow \dfrac{2\sin \left( \dfrac{A}{2} \right)}{2\cos \left( \dfrac{A}{2} \right)}
We can cancel 2 on both numerator and denominator. We will get
sin(A2)cos(A2)\Rightarrow \dfrac{\sin \left( \dfrac{A}{2} \right)}{\cos \left( \dfrac{A}{2} \right)}
We know that sinAcosA=tanA\dfrac{\sin A}{\cos A}=\tan A
So using this formula we will get our expression as
tan(A2)\Rightarrow \tan \left( \dfrac{A}{2} \right)
So we got LHS we can say the identity tan(A2)=sin(A2)cos(A2)\tan \left( \dfrac{A}{2} \right)=\Rightarrow \dfrac{\sin \left( \dfrac{A}{2} \right)}{\cos \left( \dfrac{A}{2} \right)}is verified.

Note: We can also do it starting from LHS also. We know tan A formula we substitute the formula and then we apply the above derived formulas in place of Sin A and cos A. Then by simplifying the terms we will arrive at RHS as above. Then we can say that the identity the given is verified. So to solve this question we should be aware of trigonometric identities.