Solveeit Logo

Question

Question: How do you verify the identity \[\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}} = \dfrac{{\cos...

How do you verify the identity tanxsecx+1tanx+secx1=cosx1+sinx\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}} = \dfrac{{\cos x}}{{1 + \sin x}}?

Explanation

Solution

We use trigonometric identities and ratios to solve this problem. We use some methods of simplifying algebraic expressions and verify the equation by equating the left-hand side and right-hand side of the given equation.
The formulas that we use in this problem are cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 and sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 which are standard trigonometric identities.

Complete step by step answer:
To solve this problem, consider the left-hand side of the equation and the right-hand side of the equation. And then we simplify the left-hand side of the equation and check whether we are getting the same expression present on the right-hand side as our result.
Now, in left hand side of equation, it is given as tanxsecx+1tanx+secx1\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}}
We know the identity sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
So, substitute the value of 1, in the denominator.
tanxsecx+1tanx+secx(sec2xtan2x)\Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - ({{\sec }^2}x - {{\tan }^2}x)}}
We all know that, a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
So, we can write sec2xtan2x=(secx+tanx)(secxtanx){\sec ^2}x - {\tan ^2}x = (\sec x + \tan x)(\sec x - \tan x)
So, we get,
tanxsecx+1tanx+secx(secx+tanx)(secxtanx)\Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - (\sec x + \tan x)(\sec x - \tan x)}}
Now take the term secx+tanx\sec x + \tan x common in the denominator.
tanxsecx+1(tanx+secx)(1(secxtanx))\Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - (\sec x - \tan x))}}
tanxsecx+1(tanx+secx)(1secx+tanx)\Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - \sec x + \tan x)}}
Now, you can observe that, there is a term common in numerator and denominator which is tanxsecx+1\tan x - \sec x + 1, so they get cancelled off.
1tanx+secx\Rightarrow \dfrac{1}{{\tan x + \sec x}}
We know that, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}}.
So, substitute these values in the expression.
1sinxcosx+1cosx\Rightarrow \dfrac{1}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}}}
1sinx+1cosx\Rightarrow \dfrac{1}{{\dfrac{{\sin x + 1}}{{\cos x}}}}
And finally, we can conclude that,
cosx1+sinx=RHS\Rightarrow \dfrac{{\cos x}}{{1 + \sin x}} = RHS

Note:
There is another way of verifying this equation.
We can also solve this problem in another way by multiplying both the numerator and denominator by cos2x{\cos ^2}x.
LHScos2x(tanxsecx+1)cos2x(tanx+secx1)LHS \Rightarrow \dfrac{{{{\cos }^2}x(\tan x - \sec x + 1)}}{{{{\cos }^2}x(\tan x + \sec x - 1)}}
Take a cosx\cos x from cos2x{\cos ^2}x in the numerator and multiply it to the next term.
LHScosx(tanx.cosxsecx.cosx+1.cosx)tanx.cos2x+secx.cos2x1.cos2xLHS \Rightarrow \dfrac{{\cos x(\tan x.\cos x - \sec x.\cos x + 1.\cos x)}}{{\tan x.{{\cos }^2}x + \sec x.{{\cos }^2}x - 1.{{\cos }^2}x}}
Now, we know that, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}}.
So, substitute these values in the expression.
cosx(sinxcosx.cosx1cosx.cosx+1.cosx)(sinxcosx.cos2x+1cosx.cos2x1.cos2x)\Rightarrow \dfrac{{\cos x\left( {\dfrac{{\sin x}}{{\cos x}}.\cos x - \dfrac{1}{{\cos x}}.\cos x + 1.\cos x} \right)}}{{\left( {\dfrac{{\sin x}}{{\cos x}}.{{\cos }^2}x + \dfrac{1}{{\cos x}}.{{\cos }^2}x - 1.{{\cos }^2}x} \right)}}
cosx(sinx1+cosx)(sinx.cosx+cosxcos2x)\Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\left( {\sin x.\cos x + \cos x - {{\cos }^2}x} \right)}}
We know that, cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x
cosx(sinx1+cosx)sinx.cosx+cosx(1sin2x)\Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\sin x.\cos x + \cos x - (1 - {{\sin }^2}x)}}
As we know the formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
cosx(sinx1+cosx)cosx(1+sinx)(1sinx)(1+sinx)\Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\cos x(1 + \sin x) - (1 - \sin x)(1 + \sin x)}}
cosx(sinx1+cosx)(1+sinx)(cosx(1sinx))\Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - (1 - \sin x))}}
So, we can conclude that,
LHScosx(sinx1+cosx)(1+sinx)(cosx1+sinx)LHS \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - 1 + \sin x)}}
LHScosx1+sinxLHS \Rightarrow \dfrac{{\cos x}}{{1 + \sin x}}
So, here, LHS is equal to RHS.