Question
Question: How do you verify the identity \(\dfrac{{\csc ( - x)}}{{\sec ( - x)}} = - \cot x\)?...
How do you verify the identity sec(−x)csc(−x)=−cotx?
Solution
The given trigonometric is sec(−x)csc(−x)
An even function is symmetric (by reflection) about the y-axis, i.e. f(−x)=f(x)
An odd function is symmetric (by 180∘ rotation) about the origin, i.e.f(−x)=−f(x)
Use the even and odd properties trigonometric functions.
sin(−x)=−sinx And cos(−x)=cosx
We use even and odd properties of trigonometric functions after that substitution.
After that we simplify the trigonometric function.
Finally we get the proof of identities in the given trigonometric function.
Complete step-by-step solution:
The given trigonometric is sec(−x)csc(−x)
We verify that the identity is sec(−x)csc(−x)=−cotx
Let’s take the LHS (Left Hand Side)
⇒sec(−x)csc(−x)
Use the even and odd properties of trigonometric functions, hence we get
sin(−x)=−sinx And cos(−x)=cosx
csc(−x)Andsec(−x) the formula is,
⇒csc(−x)=sin(−x)1 And
⇒sec(−x)=cos(−x)1
Now the two formula substitute in thesec(−x)csc(−x), hence we get
⇒sec(−x)csc(−x)=cos(−x)1sin(−x)1
Then the division we rewrite in the form of dcba=ba×cd, hence we get
⇒sin(−x)1×1cos(−x)
Hence we use the even and odd properties for trigonometric functions, hence we get
⇒−sinx1×1cosx
We rewrite the form, hence we get
⇒−sinxcosx
We use the formulasinxcosx=cotx, hence we substitute in the function, hence we get
⇒−cotx
⇒sec(−x)csc(−x)=−cotx
Hence verify that the identity sec(−x)csc(−x)=−cotx.
Note: An even function is symmetric (by reflection) about the y-axis, i.e.f(−x)=f(x)
An odd function is symmetric (by180∘ rotation) about the origin, i.e.f(−x)=−f(x)
The following shows the even trigonometric functions and odd trigonometric functions.
Even trigonometric functions and identities:
The Cosine function is even cos(−x)=cos(x)
The Secant function is even sec(−x)=sec(x)
Odd trigonometric functions and identities:
The Sine function is odd sin(−x)=−sin(x)
The Cosecant function is odd csc(−x)=−csc(x)
The Tangent function is odd tan(−x)=−tan(x)
The Cotangent function is odd cot(−x)=−cot(x)