Solveeit Logo

Question

Question: How do you verify the identity \[\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x\] ?...

How do you verify the identity 2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x ?

Explanation

Solution

In this question, we need to prove that 2tanx1+tan2x\dfrac{2\tan x}{1 + \tan^{2}x} is equal to sin2xsin2x . Sine , cosine and tangent are the basic trigonometric functions .Sine is nothing but a ratio of the opposite side of a right angle to the hypotenuse of the right angle . Similarly tangent is nothing but a ratio of the opposite side of a right angle to the adjacent side of the right angle. With the help of the Trigonometric functions and ratios , we can prove that 2tanx1+tan2x\dfrac{2\tan x}{1 + \tan^{2}x} is equal to sin2xsin2x
Identity used :
1.1+tan2θ=sec2θ1 + \tan^{2}\theta = \sec^{2}\theta
Formula used :
1.tanθ =sinθcosθ\tan \theta\ = \dfrac{{\sin \theta}}{{\cos \theta}}
2.secθ =1cosθ\sec \theta\ = \dfrac{1}{{\cos \theta}}

Complete step by step solution:
To prove,
2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x
First we can consider the left part of the given expression.
2tanx1+tan2x\Rightarrow\dfrac{2\tan x}{1 + \tan^{2}x}
We know that tanθ =sinθcosθ\tan \theta\ = \dfrac{{\sin \theta}}{{\cos \theta}}
By replacing xx in the place of θ\theta, we get, tanx=sinxcosx{\tan }x = \dfrac{\sin x}{\cos x}
2tanx1+tan2x=2(sinxcosx)1+tan2x\Rightarrow \dfrac{2\tan x}{1 + \tan^{2}x} = \dfrac{2\left( \dfrac{\sin x}{\cos x} \right)}{1 + \tan^{2}x}
From the trigonometric identity 1+tan2θ=sec2θ1 + \tan^{2}\theta = sec^{2}\theta ,
We get,
=2(sinxcosx)sec2x= \dfrac{2\left( \dfrac{\sin x}{\cos x} \right)}{\sec^{2}x}
We know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta}}
=2(sinxcosx)1cos2x= \dfrac{2\left( \dfrac{{\sin x}}{{\cos x}} \right)}{\dfrac{1}{\cos^{2}x}}
=2(sinxcosx)×cos2x1= 2\left( \dfrac{{\sin x}}{{\cos x}} \right) \times \dfrac{\cos^{2}x}{1}
By simplifying,
We get,
=2(sinx×cosx)= 2(\sin x \times cosx)
From the trigonometry formula, 2sinxcosx=sin2x2\sin x \cos x = \sin 2x
We get,
=sin2x= sin2x
Thus we get the left part of the expression.
We have proved 2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x
Hence proved.
Final answer :
We have proved the identity 2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x

Note: The concept used in this problem is trigonometric identities and ratios. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the use of trigonometric functions and ratios . Trigonometric functions are also known as circular functions or geometrical functions.
Alternative solution :
We can also prove this by considering the right part of the given expression first.
To prove,
2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x
First we can consider the right part of the given expression.
sin2x\Rightarrow sin2x
We can rewrite 2x2x as x+xx + x ,
sin(x+x)\Rightarrow sin(x + x)
We know that
sin(a+b)=sinacosb+cosasinb\sin \left( a + b \right) = \sin a \cos b + \cos a \sin b
Here a=b=xa = b = x
Thus we get,
sinx cosx + cosx sinx\Rightarrow \sin x\ cosx\ + \ cosx\ \sin x
By adding,
We get ,
2sinx cosx\Rightarrow 2\sin x\ cosx
On dividing the term by cos2x+sin2x\cos^{2}x + \sin^{2}x , since we know
That the value of sin2θ+cos2θ=1\sin^{2}\theta + \cos^{2}\theta = 1
We get ,
2sinxcosxcos2x+sin2x\Rightarrow \dfrac{2\sin x \cos x}{\cos^{2}x + \sin^{2}x}
On dividing each and every terms in the numerator and denominator by cos2x \cos^{2}x\
\Rightarrow \dfrac{\dfrac{2\sin x \cos x}{\cos^{2}x}}{\left\\{ \left( \dfrac{\cos^{2}x}{\cos^{2}x} \right) + \left( \dfrac{\sin^{2}x}{\cos^{2}x} \right) \right\\}}
By simplifying,
We get,
2sinxcosx1+(sin2xcos2x)\Rightarrow \dfrac{2\dfrac{{\sin x}}{{\cos x}}}{1 + \left( \dfrac{\sin^{2}x}{\cos^{2}x} \right)}
We know that tanθ =sinθcosθ\tan \theta\ = \dfrac{{\sin \theta}}{{\cos \theta}}
2tanx1+tan2x\Rightarrow \dfrac{2{\tan x}}{1 + \\\tan^{2}x}
Thus we get the left part of the expression.
We have proved 2tanx1+tan2x=sin2x\dfrac{2\tan x}{1 + \tan^{2}x} = sin2x