Solveeit Logo

Question

Question: How do you verify that \(f\left( x \right) = 3x + 5\), \(g\left( x \right) = \dfrac{1}{3}x - \dfrac{...

How do you verify that f(x)=3x+5f\left( x \right) = 3x + 5, g(x)=13x53g\left( x \right) = \dfrac{1}{3}x - \dfrac{5}{3} are inverse?

Explanation

Solution

An inverse function is a function, which can reverse into another function. In other words, if any function ‘f’ takes p to q then the inverse of ‘f’ will take q to p. A function accepts a value followed by performing particular operations on these values to generate an output. If we consider functions, f and g are inverses, then f(g(x))f\left( {g\left( x \right)} \right) is equal to g(f(x))g\left( {f\left( x \right)} \right).
Properties of inverse functions:
Two functions f and g will be referred to as an inverse of each other if:
Both f and g are one to one functions. In one to one functions, each value is mapped in their domain to exactly one value in the co-domain (range).
The co-domain (range) of one function is the domain of another function and vice versa.

Complete step-by-step solution:
In this question, two functions f(x)=3x+5f\left( x \right) = 3x + 5 and g(x)=13x53g\left( x \right) = \dfrac{1}{3}x - \dfrac{5}{3} are given.
The functions f(x)=3x+5f\left( x \right) = 3x + 5 and g(x)=13x53g\left( x \right) = \dfrac{1}{3}x - \dfrac{5}{3} are inverse if the value of f(g(x))f\left( {g\left( x \right)} \right) is equal to the value of g(f(x))g\left( {f\left( x \right)} \right).
First, let us find the value of f(g(x))f\left( {g\left( x \right)} \right).
f(g(x))=3(13x53)+5\Rightarrow f\left( {g\left( x \right)} \right) = 3\left( {\dfrac{1}{3}x - \dfrac{5}{3}} \right) + 5
Let us take 13\dfrac{1}{3} as a common factor.
f(g(x))=3×13(x5)+5\Rightarrow f\left( {g\left( x \right)} \right) = 3 \times \dfrac{1}{3}\left( {x - 5} \right) + 5
That is equal to,
f(g(x))=x5+5\Rightarrow f\left( {g\left( x \right)} \right) = x - 5 + 5
Therefore,
f(g(x))=x\Rightarrow f\left( {g\left( x \right)} \right) = x
Now, let us find the value of g(f(x))g\left( {f\left( x \right)} \right).
g(f(x))=13(3x+5)53\Rightarrow g\left( {f\left( x \right)} \right) = \dfrac{1}{3}\left( {3x + 5} \right) - \dfrac{5}{3}
Let us multiply13\dfrac{1}{3} into the bracket.
g(f(x))=13(3x)+13(5)53\Rightarrow g\left( {f\left( x \right)} \right) = \dfrac{1}{3}\left( {3x} \right) + \dfrac{1}{3}\left( 5 \right) - \dfrac{5}{3}
That is equal to,
g(f(x))=x+5353\Rightarrow g\left( {f\left( x \right)} \right) = x + \dfrac{5}{3} - \dfrac{5}{3}
Therefore,
g(f(x))=x\Rightarrow g\left( {f\left( x \right)} \right) = x
Here, the value of f(g(x))f\left( {g\left( x \right)} \right) is equal to x, and the value of g(f(x))g\left( {f\left( x \right)} \right) is also equal to x.
So, we can say that f(g(x))=g(f(x))f\left( {g\left( x \right)} \right) = g\left( {f\left( x \right)} \right) .

Hence, f(x)=3x+5f\left( x \right) = 3x + 5 and g(x)=13x53g\left( x \right) = \dfrac{1}{3}x - \dfrac{5}{3} are inverse functions.

Note: There is another method to solve this question.
First, we will take:
f(x)=y\Rightarrow f\left( x \right) = y...(1)
That is equal to,
3x+5=y\Rightarrow 3x + 5 = y
Now, interchange x and y and solve for y.
So,
f(y)=x\Rightarrow f\left( y \right) = x
Substitute the function value.
3y+5=x\Rightarrow 3y + 5 = x
Let us subtract 5 on both sides.
3y+55=x5\Rightarrow 3y + 5 - 5 = x - 5
That is equal to,
3y=x5\Rightarrow 3y = x - 5
Let us divide both sides by 3.
13(3y)=13(x5)\Rightarrow \dfrac{1}{3}\left( {3y} \right) = \dfrac{1}{3}\left( {x - 5} \right)
So,
y=13x53\Rightarrow y = \dfrac{1}{3}x - \dfrac{5}{3}
y=g(x)\Rightarrow y = g\left( x \right) ...(2)
From equations (1) and (2),
f(x)=g(x)\Rightarrow f\left( x \right) = g\left( x \right)
Hence, f(x)=3x+5f\left( x \right) = 3x + 5 and g(x)=13x53g\left( x \right) = \dfrac{1}{3}x - \dfrac{5}{3} are inverse functions.