Solveeit Logo

Question

Question: How do you verify \({\text{tan(}}\theta {\text{)cosec(}}\theta {\text{) = sec(}}\theta {\text{)}}\) ...

How do you verify tan(θ)cosec(θ) = sec(θ){\text{tan(}}\theta {\text{)cosec(}}\theta {\text{) = sec(}}\theta {\text{)}} ?

Explanation

Solution

In this question, we are asked to verify the given statement. First we have to expand the terms using the properties of trigonometric functions and its expressions. And then we need to equate or interpret the expression of the LHS in such a way that we can get the RHS. By this we get the RHS.

Formula used: The properties of trigonometric functions used:
tan(θ) = sin(θ)cos(θ){\text{tan(}}\theta {\text{) = }}\dfrac{{\sin (\theta )}}{{\cos (\theta )}}
cosec(θ) = 1sin(θ){\text{cosec(}}\theta {\text{) = }}\dfrac{1}{{\sin (\theta )}}
sec(θ) = 1cos(θ){\text{sec(}}\theta {\text{) = }}\dfrac{1}{{\cos (\theta )}}

Complete step-by-step solution:
We are asked to verify that the given LHS is equal is LHS i.e. tan(θ)cosec(θ) = sec(θ){\text{tan(}}\theta {\text{)cosec(}}\theta {\text{) = sec(}}\theta {\text{)}}
For this, we will use the properties of trigonometric functions.
From the properties of trigonometric functions, we have
tan(θ) = sin(θ)cos(θ)\Rightarrow {\text{tan(}}\theta {\text{) = }}\dfrac{{\sin (\theta )}}{{\cos (\theta )}}
cosec(θ) = 1sin(θ)\Rightarrow {\text{cosec(}}\theta {\text{) = }}\dfrac{1}{{\sin (\theta )}}
Now replacing tan(θ{\text{tan(}}\theta {\text{) }} by  sin(θ)cos(θ){\text{ }}\dfrac{{\sin (\theta )}}{{\cos (\theta )}} and cosec(θ{\text{cosec(}}\theta {\text{) }} by 1sin(θ)\dfrac{1}{{\sin (\theta )}}, we get
LHS =tan(θ)cosec(θ)=sin(θ)cos(θ)×1sin(θ) {\text{tan(}}\theta {\text{)cosec(}}\theta {\text{)}} = \dfrac{{\sin (\theta )}}{{\cos (\theta )}} \times \dfrac{1}{{\sin (\theta )}}{\text{ }}
As there is asin(θ)\sin (\theta ) in both the numerator and denominator, we can cancel it to simplify. And it will become like this,
tan(θ)cosec(θ)=1cos(θ)\Rightarrow {\text{tan(}}\theta {\text{)cosec(}}\theta {\text{)}} = \dfrac{1}{{\cos (\theta )}}
Now we use the formula sec(θ) = 1cos(θ){\text{sec(}}\theta {\text{) = }}\dfrac{1}{{\cos (\theta )}}, we have to replace  1cos(θ){\text{ }}\dfrac{1}{{\cos (\theta )}}by sec(θ{\text{sec(}}\theta {\text{) }}.
tan(θ)cosec(θ)=sec(θ)\Rightarrow {\text{tan(}}\theta {\text{)cosec(}}\theta {\text{)}} = \sec (\theta )
And we get the RHS,
Hence proved.

Note: In this question we have alternative method as follows:
Alternative method:
In this question, we need to verify thattan(θ)cosec(θ)=sec(θ){\text{tan(}}\theta {\text{)cosec(}}\theta {\text{)}} = \sec (\theta ).
We can verify this by solving RHS too.
We all know the properties of trigonometric functions, from that we can say
sec(θ)=1cos(θ)\Rightarrow \sec (\theta ) = \dfrac{1}{{\cos (\theta )}}
Therefore, by replacing sec(θ)\sec (\theta ) by 1cos(θ)\dfrac{1}{{\cos (\theta )}}, we get
sec(θ)=1cos(θ)\Rightarrow \sec (\theta ) = \dfrac{1}{{\cos (\theta )}}
Now, we have to multiply and divide it by sin(θ)\sin (\theta ),
sec(θ)=1cos(θ)×sin(θ)sin(θ)\Rightarrow \sec (\theta ) = \dfrac{1}{{\cos (\theta )}} \times \dfrac{{\sin (\theta )}}{{\sin (\theta )}}
Making it as an expression we get,
sec(θ)=sin(θ)cos(θ)sin(θ)\Rightarrow \sec (\theta ) = \dfrac{{\sin (\theta )}}{{\cos (\theta )\sin (\theta )}}
Now we need to split this assin(θ)cos(θ)×1sin(θ)\dfrac{{\sin (\theta )}}{{\cos (\theta )}} \times \dfrac{1}{{\sin (\theta )}},
sec(θ)=sin(θ)cos(θ)×1sin(θ)\Rightarrow \sec (\theta ) = \dfrac{{\sin (\theta )}}{{\cos (\theta )}} \times \dfrac{1}{{\sin (\theta )}}
As we know that,
tan(θ) = sin(θ)cos(θ)\Rightarrow {\text{tan(}}\theta {\text{) = }}\dfrac{{\sin (\theta )}}{{\cos (\theta )}}
cosec(θ) = 1sin(θ)\Rightarrow {\text{cosec(}}\theta {\text{) = }}\dfrac{1}{{\sin (\theta )}}
We will replace sin(θ)cos(θ)\dfrac{{\sin (\theta )}}{{\cos (\theta )}} by tan(θ){\text{tan(}}\theta {\text{)}} and 1sin(θ)\dfrac{1}{{\sin (\theta )}} by cosec(θ){\text{cosec(}}\theta {\text{)}} to get the answer.
Therefore it becomes, LHS =sec(θ)=tan(θ)cosec(θ)\sec (\theta ) = \tan (\theta )\cos {\text{ec}}(\theta ).
Hence the given statement is verified.