Solveeit Logo

Question

Question: How do you verify \(\text{cosec}x-\sin x=\cos x\cot x\)?...

How do you verify cosecxsinx=cosxcotx\text{cosec}x-\sin x=\cos x\cot x?

Explanation

Solution

We use the trigonometric identities like cosecx=1sinx\text{cosec}x=\dfrac{1}{\sin x}, 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x to convert the given equation of cosecxsinx\text{cosec}x-\sin x into a multiplication form. We also use the ratio relation of cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x to find the final result after those binary operations.

Complete step by step answer:
We need to verify the given equation cosecxsinx=cosxcotx\text{cosec}x-\sin x=\cos x\cot x.
We are going to use the relation between the ratios to prove the equation.
We know that cosecx=1sinx\text{cosec}x=\dfrac{1}{\sin x}. Replacing the value in the left-hand side of cosecxsinx\text{cosec}x-\sin x
cosecxsinx=1sinxsinx\text{cosec}x-\sin x=\dfrac{1}{\sin x}-\sin x. Now we simplify the subtraction.
We also know that 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x. The L.C.M becomes sinx\sin x.
Therefore, 1sinxsinx=1sin2xsinx=cos2xsinx\dfrac{1}{\sin x}-\sin x=\dfrac{1-{{\sin }^{2}}x}{\sin x}=\dfrac{{{\cos }^{2}}x}{\sin x}. We replaced the value of 1sin2x1-{{\sin }^{2}}x with cos2x{{\cos }^{2}}x.
Now we break the division of cos2xsinx\dfrac{{{\cos }^{2}}x}{\sin x} as cosxsinx×cosx\dfrac{\cos x}{\sin x}\times \cos x.
We have the identity of cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x. We replace the value in cosxsinx×cosx\dfrac{\cos x}{\sin x}\times \cos x and get
cos2xsinx=cosxsinx×cosx=cotxcosx\dfrac{{{\cos }^{2}}x}{\sin x}=\dfrac{\cos x}{\sin x}\times \cos x=\cot x\cos x.
Thus verified cosecxsinx=cosxcotx\text{cosec}x-\sin x=\cos x\cot x.
We verify the result with an arbitrary value of x. Let's assume x=60x={{60}^{\circ }}.
Therefore, the result of the left-hand side equation will be cosec60sin60\text{cosec}60-\sin 60. The value will be
cosec60sin60=2332=4323=123\text{cosec}60-\sin 60=\dfrac{2}{\sqrt{3}}-\dfrac{\sqrt{3}}{2}=\dfrac{4-3}{2\sqrt{3}}=\dfrac{1}{2\sqrt{3}}.
The result of the left-hand side equation will be cos60cot60\cos 60\cot 60. The value will be
cos60cot60=12×13=123\cos 60\cot 60=\dfrac{1}{2}\times \dfrac{1}{\sqrt{3}}=\dfrac{1}{2\sqrt{3}}.
Thus, we verify the result cosecxsinx=cosxcotx\text{cosec}x-\sin x=\cos x\cot x.

Note: The relation can be proved both ways. The most preferred one being L.H.S to R.H.S proving. We need to remember that the relation 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x is valid only in their common domain 0xπ20\le x\le \dfrac{\pi }{2}. Rest of the relations are valid for the full domain of R\mathbb{R}.