Solveeit Logo

Question

Question: How do you verify \(\sec x-\cos x=\dfrac{\sin x}{\cot x}\)?...

How do you verify secxcosx=sinxcotx\sec x-\cos x=\dfrac{\sin x}{\cot x}?

Explanation

Solution

We first take the left-hand part of the equation of secxcosx=sinxcotx\sec x-\cos x=\dfrac{\sin x}{\cot x}. Then we simplify the equation. We convert the denominator using the relation secx=1cosx\sec x=\dfrac{1}{\cos x}. Then we use the theorem cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. We eliminate the part sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x. We then divide sinx\sin x from both denominator and numerator After elimination we get the right-hand side of the equation.

Complete step-by-step solution:
We have to prove the trigonometric equation secxcosx=sinxcotx\sec x-\cos x=\dfrac{\sin x}{\cot x}.
We take the left-hand side of the equation secxcosx=sinxcotx\sec x-\cos x=\dfrac{\sin x}{\cot x} and prove the right-side part.
We get secxcosx\sec x-\cos x. We know that secx=1cosx\sec x=\dfrac{1}{\cos x}.
Therefore, secxcosx=1cosxcosx=1cos2xcosx\sec x-\cos x=\dfrac{1}{\cos x}-\cos x=\dfrac{1-{{\cos }^{2}}x}{\cos x}.
We now use the identity theorem of trigonometry sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 which gives us sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x. We place the value in the equation and get 1cos2xcosx=sin2xcosx\dfrac{1-{{\cos }^{2}}x}{\cos x}=\dfrac{{{\sin }^{2}}x}{\cos x}.
We can now divide sinx\sin x from both denominator and numerator.
The equation becomes sin2x/sinxcosx/sinx\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}.
Now we apply the theorem cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} again to convert to cotx\cot x.
The final form is sin2x/sinxcosx/sinx=sinxcotx\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}=\dfrac{\sin x}{\cot x}.
Thus proved secxcosx=sinxcotx\sec x-\cos x=\dfrac{\sin x}{\cot x}.

Note: It is important to remember that the condition to eliminate the sinx\sin x from both denominator and numerator is sinx0\sin x\ne 0. No domain is given for the variable xx. The simplified condition will be xnπ,nZx\ne n\pi ,n\in \mathbb{Z}. The identities sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 and secx=1cosx\sec x=\dfrac{1}{\cos x} are valid for any value of xx. The division of the fraction part only gives sinx\sin x as the solution.