Question
Question: How do you verify \( \dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\sin x+\cos x \) ?...
How do you verify 1−tanxcosx+1−cotxsinx=sinx+cosx ?
Solution
Hint : We have sum of two terms in the left-hand side of 1−tanxcosx+1−cotxsinx=sinx+cosx . We multiply cosx with 1−tanxcosx and sinx with 1−cotxsinx on both numerator and denominator. Then we add them as the denominators are the same. Then we use the identity of a2−b2=(a+b)(a−b) to factor the numerator. We also need to mention the conditions.
Complete step-by-step answer :
We multiply cosx to the numerator and denominator of 1−tanxcosx .
We know tanx=cosxsinx . This gives tanx.cosx=sinx .
So,
1−tanxcosx×cosxcosx=cosx−sinxcos2x .
We multiply sinx to the numerator and denominator of 1−cotxsinx .
We know
cotx=sinxcosx . This gives cotx.sinx=cosx .
So,
1−cotxsinx×sinxsinx=sinx−cosxsin2x .
The equation becomes
1−tanxcosx+1−cotxsinx=cosx−sinxcos2x+sinx−cosxsin2x .
To make the denominators the same we take a negative sign common.
1−tanxcosx+1−cotxsinx=cosx−sinxcos2x−cosx−sinxsin2x .
The addition gives
1−tanxcosx+1−cotxsinx=cosx−sinxcos2x−sin2x
The numerator is in the form of a2−b2=(a+b)(a−b) . We now apply the identity theorem for the term cos2x−sin2x . We assume the values a=cosx,b=sinx .
Applying the theorem, we get
cos2x−sin2x=(cosx+sinx)(cosx−sinx) .
The equation becomes
1−tanxcosx+1−cotxsinx=(cosx−sinx)(cosx+sinx)(cosx−sinx) .
We can now eliminate the (cosx−sinx) from both denominator and numerator.
The equation becomes
1−tanxcosx+1−cotxsinx=(cosx+sinx) .
Thus verified 1−tanxcosx+1−cotxsinx=(cosx+sinx) .
Note : It is important to remember that the condition to eliminate the (cosx−sinx) from both denominator and numerator is (cosx−sinx)=0 . No domain is given for the variable x . The value of tanx=0 is essential. The simplified condition will be x=nπ,n∈Z .
We also have the multiple angle theorem of cos2x−sin2x=cos2x .