Solveeit Logo

Question

Question: How do you verify \( \dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\sin x+\cos x \) ?...

How do you verify cosx1tanx+sinx1cotx=sinx+cosx\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\sin x+\cos x ?

Explanation

Solution

Hint : We have sum of two terms in the left-hand side of cosx1tanx+sinx1cotx=sinx+cosx\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\sin x+\cos x . We multiply cosx\cos x with cosx1tanx\dfrac{\cos x}{1-\tan x} and sinx\sin x with sinx1cotx\dfrac{\sin x}{1-\cot x} on both numerator and denominator. Then we add them as the denominators are the same. Then we use the identity of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to factor the numerator. We also need to mention the conditions.

Complete step-by-step answer :
We multiply cosx\cos x to the numerator and denominator of cosx1tanx\dfrac{\cos x}{1-\tan x} .
We know tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} . This gives tanx.cosx=sinx\tan x.\cos x=\sin x .
So,
cosx1tanx×cosxcosx=cos2xcosxsinx\dfrac{\cos x}{1-\tan x}\times \dfrac{\cos x}{\cos x}=\dfrac{{{\cos }^{2}}x}{\cos x-\sin x} .
We multiply sinx\sin x to the numerator and denominator of sinx1cotx\dfrac{\sin x}{1-\cot x} .
We know
cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} . This gives cotx.sinx=cosx\cot x.\sin x=\cos x .
So,
sinx1cotx×sinxsinx=sin2xsinxcosx\dfrac{\sin x}{1-\cot x}\times \dfrac{\sin x}{\sin x}=\dfrac{{{\sin }^{2}}x}{\sin x-\cos x} .
The equation becomes
cosx1tanx+sinx1cotx=cos2xcosxsinx+sin2xsinxcosx\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\dfrac{{{\cos }^{2}}x}{\cos x-\sin x}+\dfrac{{{\sin }^{2}}x}{\sin x-\cos x} .
To make the denominators the same we take a negative sign common.
cosx1tanx+sinx1cotx=cos2xcosxsinxsin2xcosxsinx\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\dfrac{{{\cos }^{2}}x}{\cos x-\sin x}-\dfrac{{{\sin }^{2}}x}{\cos x-\sin x} .
The addition gives
cosx1tanx+sinx1cotx=cos2xsin2xcosxsinx\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{\cos x-\sin x}
The numerator is in the form of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) . We now apply the identity theorem for the term cos2xsin2x{{\cos }^{2}}x-{{\sin }^{2}}x . We assume the values a=cosx,b=sinxa=\cos x,b=\sin x .
Applying the theorem, we get
cos2xsin2x=(cosx+sinx)(cosxsinx){{\cos }^{2}}x-{{\sin }^{2}}x=\left( \cos x+\sin x \right)\left( \cos x-\sin x \right) .
The equation becomes
cosx1tanx+sinx1cotx=(cosx+sinx)(cosxsinx)(cosxsinx)\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\dfrac{\left( \cos x+\sin x \right)\left( \cos x-\sin x \right)}{\left( \cos x-\sin x \right)} .
We can now eliminate the (cosxsinx)\left( \cos x-\sin x \right) from both denominator and numerator.
The equation becomes
cosx1tanx+sinx1cotx=(cosx+sinx)\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\left( \cos x+\sin x \right) .
Thus verified cosx1tanx+sinx1cotx=(cosx+sinx)\dfrac{\cos x}{1-\tan x}+\dfrac{\sin x}{1-\cot x}=\left( \cos x+\sin x \right) .

Note : It is important to remember that the condition to eliminate the (cosxsinx)\left( \cos x-\sin x \right) from both denominator and numerator is (cosxsinx)0\left( \cos x-\sin x \right)\ne 0 . No domain is given for the variable xx . The value of tanx0\tan x\ne 0 is essential. The simplified condition will be xnπ,nZx\ne n\pi ,n\in \mathbb{Z} .
We also have the multiple angle theorem of cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x .