Solveeit Logo

Question

Question: How do you verify \[\dfrac{\cos x}{1-\sin x}=\sec x+\tan x\] ?...

How do you verify cosx1sinx=secx+tanx\dfrac{\cos x}{1-\sin x}=\sec x+\tan x ?

Explanation

Solution

Since this question comprises the trigonometric function, so we prove this problem by using various trigonometric identities and formulas. We start solving this problem by using LHS. Firstly, we rationalize the denominator and then use algebraic identity ( a+b)(ab)=a2b2(~a+b)\left( a-b \right)={{a}^{2}}-{{b}^{2}} and distributive property a(b+c)=ab+aca(b+c)=ab+acin the equation. Doing further calculations, we put trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in the denominator and at last, we put trigonometric formula cosx=1secx\cos x=\dfrac{1}{\sec x}, andtanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, to get the required RHS.

Complete step by step answer:
According to the question, we have to prove that: cosx1sinx=secx+tanx\dfrac{\cos x}{1-\sin x}=\sec x+\tan x .
Let’s start this problem by solving LHS, that is
LHS: cosx1sinx\dfrac{\cos x}{1-\sin x}
On rationalizing the denominator, that is multiplying the numerator and denominator by (1+sinx)(1+\sin x), we get
(cosx1sinx).(1+sinx1+sin x)\Rightarrow \left( \dfrac{\cos x}{1-\sin x} \right).\left( \dfrac{\text{1+}\sin x}{\text{1+sin }x} \right)
cosx(1+sinx)(1sinx)(1+sinx)\Rightarrow \dfrac{\cos x(1+\sin x)}{(1-\sin x)(1+\sin x)}
By using algebraic identity ( a+b)(ab)=a2b2(~a+b)\left( a-b \right)={{a}^{2}}-{{b}^{2}}in the denominator and distributive property a(b+c)=ab+aca(b+c)=ab+ac in the numerator, we get
cosx+cosx.sinx1sin2x\Rightarrow \dfrac{\cos x+\cos x.\sin x}{1-{{\sin }^{2}}x}
Put trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in the denominator of the above equation, we get
cosx+cosx.sinxcos2x\Rightarrow \dfrac{\cos x+\cos x.\sin x}{{{\cos }^{2}}x}
Now, we split the denominator to the addition, that is,
cosxcos2x+cosx.sinxcos2x 1cosx+sinxcosx \begin{aligned} & \Rightarrow \dfrac{\cos x}{{{\cos }^{2}}x}+\dfrac{\cos x.\sin x}{{{\cos }^{2}}x} \\\ & \Rightarrow \dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x} \\\ \end{aligned}
Thus, using the trigonometric formula cosx=1secx\cos x=\dfrac{1}{\sec x} and tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} , we get
secx+tanx=RHS\Rightarrow \sec x+\tan x=RHS
Hence Proved.

Note:
We should perform each step carefully to avoid calculation mistakes. We should always remember that in rationalizing the denominator, we have to multiply and divide it by (1+sin x) instead of (1-sin x). One of the alternative methods for solving this problem is starting the solution using RHS. Firstly, we put the trigonometric formula secx=1cosx\sec x=\dfrac{1}{\cos x} and tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} in the equation, and take LCM of the same. After that, rationalize the denominator and use distributive identity (a+b).c=ac+bc(a+b).c=ac+bc in the equation. After further calculations, put the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 and use algebraic identity (ab)(a+b)=a2b2(a-b)(a+b)={{a}^{2}}-{{b}^{2}}to get the required statement that is LHS.
Let RHS=secx+tanxRHS=\sec x+\tan x
We put trigonometric identity secx=1cosx\sec x=\dfrac{1}{\cos x} and tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} in the above equation, we get
1cosx+sinxcosx\Rightarrow \dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}
Take LCM of the above equation, we get
1+sinxcosx\Rightarrow \dfrac{1+\sin x}{\cos x}
Now, rationalize the denominator of the above equation, that is multiply and divide it by (cos x), we get
1+sinxcosx.(cosxcosx)\Rightarrow \dfrac{1+\sin x}{\cos x}.\left( \dfrac{\cos x}{\cos x} \right)
(1+sinx).cosxcosx.cosx\Rightarrow \dfrac{(1+\sin x).\cos x}{\cos x.\cos x}
Using distributive property (a+b).c=ac+bc(a+b).c=ac+bc in the numerator, we get
cosx+sinx.cosxcos2x\Rightarrow \dfrac{\cos x+\sin x.\cos x}{{{\cos }^{2}}x}
Put trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in the denominator to get
cosx+cosx.sinx1sin2x\Rightarrow \dfrac{\cos x+\cos x.\sin x}{1-{{\sin }^{2}}x}
Now, using algebraic identity (ab)(a+b)=a2b2(a-b)(a+b)={{a}^{2}}-{{b}^{2}}in the denominator, we get
cosx(1+sinx)(1+sinx)(1sinx)\Rightarrow \dfrac{\cos x(1+\sin x)}{(1+\sin x)(1-\sin x)}
cosx1sinx=LHS\Rightarrow \dfrac{\cos x}{1-\sin x}=LHS
Hence Proved.