Solveeit Logo

Question

Question: How do you verify: \(\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x\)?...

How do you verify: cosx1+sinx+1+sinxcosx=2secx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x?

Explanation

Solution

We have sum of two terms in the left-hand side of cosx1+sinx+1+sinxcosx=2secx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x. We take the LCM of the denominators. Then we add them in the denominators. Then we use the identity of (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab to simplify the numerator and also use sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1.

Complete step-by-step solution:
We have the sum of two terms in cosx1+sinx+1+sinxcosx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}. We take the LCM of the denominators as the multiplications of those terms.
The equation becomes cosx1+sinx+1+sinxcosx=cos2x+(1+sinx)2cosx(1+sinx)\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=\dfrac{{{\cos }^{2}}x+{{\left( 1+\sin x \right)}^{2}}}{\cos x\left( 1+\sin x \right)}.
We break the square as (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, (1+sinx)2=1+sin2x+2sinx{{\left( 1+\sin x \right)}^{2}}=1+{{\sin }^{2}}x+2\sin x.
The equation becomes cosx1+sinx+1+sinxcosx=cos2x+(1+sinx)2cosx(1+sinx)=cos2x+1+sin2x+2sinxcosx(1+sinx)\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=\dfrac{{{\cos }^{2}}x+{{\left( 1+\sin x \right)}^{2}}}{\cos x\left( 1+\sin x \right)}=\dfrac{{{\cos }^{2}}x+1+{{\sin }^{2}}x+2\sin x}{\cos x\left( 1+\sin x \right)}.
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. We get cosx1+sinx+1+sinxcosx=2+2sinxcosx(1+sinx)\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=\dfrac{2+2\sin x}{\cos x\left( 1+\sin x \right)}.
We take 2 common from the numerator to get cosx1+sinx+1+sinxcosx=2(1+sinx)cosx(1+sinx)\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=\dfrac{2\left( 1+\sin x \right)}{\cos x\left( 1+\sin x \right)}.
We omit the common from both numerator and denominator and get
cosx1+sinx+1+sinxcosx=2(1+sinx)cosx(1+sinx)=2cosx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=\dfrac{2\left( 1+\sin x \right)}{\cos x\left( 1+\sin x \right)}=\dfrac{2}{\cos x}.
We use the inverse formula to get 1cosx=secx\dfrac{1}{\cos x}=\sec x. So, cosx1+sinx+1+sinxcosx=2secx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x.
Thus verified cosx1+sinx+1+sinxcosx=2secx\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x.

Note: It is important to remember that the condition to eliminate the (1+sinx)\left( 1+\sin x \right) from both denominator and numerator is (1+sinx)0\left( 1+\sin x \right)\ne 0. No domain is given for the variable xx. The value of sinx1\sin x\ne -1 is essential. The simplified condition will be x(4n1)π2,nZx\ne \dfrac{\left( 4n-1 \right)\pi }{2},n\in \mathbb{Z}.