Question
Question: How do you verify: \(\dfrac{\cos x}{1+\sin x}+\dfrac{1+\sin x}{\cos x}=2\sec x\)?...
How do you verify: 1+sinxcosx+cosx1+sinx=2secx?
Solution
We have sum of two terms in the left-hand side of 1+sinxcosx+cosx1+sinx=2secx. We take the LCM of the denominators. Then we add them in the denominators. Then we use the identity of (a+b)2=a2+b2+2ab to simplify the numerator and also use sin2x+cos2x=1.
Complete step-by-step solution:
We have the sum of two terms in 1+sinxcosx+cosx1+sinx. We take the LCM of the denominators as the multiplications of those terms.
The equation becomes 1+sinxcosx+cosx1+sinx=cosx(1+sinx)cos2x+(1+sinx)2.
We break the square as (a+b)2=a2+b2+2ab. So, (1+sinx)2=1+sin2x+2sinx.
The equation becomes 1+sinxcosx+cosx1+sinx=cosx(1+sinx)cos2x+(1+sinx)2=cosx(1+sinx)cos2x+1+sin2x+2sinx.
We know that sin2x+cos2x=1. We get 1+sinxcosx+cosx1+sinx=cosx(1+sinx)2+2sinx.
We take 2 common from the numerator to get 1+sinxcosx+cosx1+sinx=cosx(1+sinx)2(1+sinx).
We omit the common from both numerator and denominator and get
1+sinxcosx+cosx1+sinx=cosx(1+sinx)2(1+sinx)=cosx2.
We use the inverse formula to get cosx1=secx. So, 1+sinxcosx+cosx1+sinx=2secx.
Thus verified 1+sinxcosx+cosx1+sinx=2secx.
Note: It is important to remember that the condition to eliminate the (1+sinx) from both denominator and numerator is (1+sinx)=0. No domain is given for the variable x. The value of sinx=−1 is essential. The simplified condition will be x=2(4n−1)π,n∈Z.