Solveeit Logo

Question

Question: How do you verify \(\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=1-2{{\sin }^{2}}x\) ?...

How do you verify 1tan2x1+tan2x=12sin2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=1-2{{\sin }^{2}}x ?

Explanation

Solution

We know the formula 1+tan2x1+{{\tan }^{2}}x is equal to sec2x{{\sec }^{2}}x , sum of squares of sin x and cos x is equal to 1 and we know that tan x is the ratio of sin x and cos x . We can use these 2 formula to prove 1tan2x1+tan2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} is equal to 12sin2x1-2{{\sin }^{2}}x. We replace tan x with sinxcosx\dfrac{\sin x}{\cos x} and 1+tan2x1+{{\tan }^{2}}x with sec2x{{\sec }^{2}}x .

Complete step-by-step answer:
We have to verify 1tan2x1+tan2x=12sin2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=1-2{{\sin }^{2}}x , we will go from LHS to RHS
we know that 1+tan2x1+{{\tan }^{2}}x = sec2x{{\sec }^{2}}x and tan x = sinxcosx\dfrac{\sin x}{\cos x} , we can write tan2x{{\tan }^{2}}x equal to sin2xcos2x\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}
So we can write 1tan2x1+tan2x=1sin2xcos2x1+sin2xcos2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=\dfrac{1-\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}}{1+\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}} where cos x is not equal to 0 that means x is not equal to nπ2\dfrac{n\pi }{2} where n is an integer.
Further solving we get 1tan2x1+tan2x=cos2xsin2xcos2x+sin2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x+{{\sin }^{2}}x} where cos x is not equal to 0
We know that sum of squares of sin x and cos x is equal to 1 so we can write sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
1tan2x1+tan2x=cos2xsin2x\Rightarrow \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}={{\cos }^{2}}x-{{\sin }^{2}}x
Now replacing cos2x{{\cos }^{2}}x with 1sin2x1-{{\sin }^{2}}x in the above equation we get
1tan2x1+tan2x=12sin2x\Rightarrow \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=1-2{{\sin }^{2}}x where x is not equal to nπ2\dfrac{n\pi }{2}

Note: We can prove the value of 1tan2x1+tan2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} and 12sin2x1-2{{\sin }^{2}}x both are equal to cos 2x . Another formula for cos 2x is 2cos2x12{{\cos }^{2}}x-1 . While we write cos 2x is equal to 1tan2x1+tan2x\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} , we should always mention that the angle x should be equal to nπ2\dfrac{n\pi }{2} ; where n is an integer, because at nπ2\dfrac{n\pi }{2} the value of tan x tends to infinity. nπ2\dfrac{n\pi }{2} does not lie in the domain of tan x.