Question
Question: How do you verify \(\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x\)?...
How do you verify 1−sinx1+sinx−1+sinx1−sinx=4tanxsecx?
Solution
In this problem we need to verify the given equation. For this we will consider the left-hand side part and we will simplify that part. On the left-hand side, we can observe that the two fractions are in subtraction. We know that ba−dc=bdad−bc. So, we will compare the left-hand side part with ba−dc and write the values of a, b, c, d. Now we will find the all the values which are necessary for the formula ba−dc=bdad−bc which are ad, bc, bd. After calculating all the necessary values, we will substitute them in the formula and simplify them to get the required result.
Complete step by step answer:
Given equation 1−sinx1+sinx−1+sinx1−sinx=4tanxsecx.
In the above equation the left-hand side part is
LHS=1−sinx1+sinx−1+sinx1−sinx
Comparing the above equation with ba−dc, then we will get the values
a=d=1+sinx, b=c=1−sinx.
Now the value of ad will be
ad=(1+sinx)(1+sinx)⇒ad=(1+sinx)2
Applying the formula (a+b)2=a2+b2+2ab in the above equation, then we will get
⇒ad=1+sin2x+2sinx
Now the value of bc will be
bc=(1−sinx)(1−sinx)⇒bc=(1−sinx)2
Applying the formula (a−b)2=a2+b2−2ab in the above equation, then we will get
⇒bc=1+sin2x−2sinx
Now the value of bd will be
bd=(1−sinx)(1+sinx)
We know that (a+b)(a−b)=a2−b2, then we will have
⇒bd=1−sin2x
From the trigonometric identity sin2x+cos2x=1, the value of bd will be
⇒bd=cos2x.
Now substituting all the values, we have in the formula ba−dc=bdad−bc, then we will get
1−sinx1+sinx−1+sinx1−sinx=cos2x(1+sin2x+2sinx)−(1+sin2x−2sinx)
Simplifying the above equation, then we will get
1−sinx1+sinx−1+sinx1−sinx=cos2x1+sin2x+2sinx−1−sin2x+2sinx⇒1−sinx1+sinx−1+sinx1−sinx=cos2x4sinx
We can write cos2x as cosx×cosx, now the above equation is modified as
⇒1−sinx1+sinx−1+sinx1−sinx=4×cosxsinx×cosx1
We have trigonometric formulas cosxsinx=tanx, cosx1=secx. Substituting these values in the above equation, then we will get
⇒1−sinx1+sinx−1+sinx1−sinx=4tanxsecx
Hence verified.
Note: We can also follow another method that is multiplying the term 1−sinx1+sinxwith 1+sinx1+sinx and the term 1+sinx1−sinx with 1−sinx1−sinx and apply all the trigonometric formula we have and simplify the equation to get the required result.