Solveeit Logo

Question

Question: How do you verify \(\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x\)?...

How do you verify 1+sinx1sinx1sinx1+sinx=4tanxsecx\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x?

Explanation

Solution

In this problem we need to verify the given equation. For this we will consider the left-hand side part and we will simplify that part. On the left-hand side, we can observe that the two fractions are in subtraction. We know that abcd=adbcbd\dfrac{a}{b}-\dfrac{c}{d}=\dfrac{ad-bc}{bd}. So, we will compare the left-hand side part with abcd\dfrac{a}{b}-\dfrac{c}{d} and write the values of aa, bb, cc, dd. Now we will find the all the values which are necessary for the formula abcd=adbcbd\dfrac{a}{b}-\dfrac{c}{d}=\dfrac{ad-bc}{bd} which are adad, bcbc, bdbd. After calculating all the necessary values, we will substitute them in the formula and simplify them to get the required result.

Complete step by step answer:
Given equation 1+sinx1sinx1sinx1+sinx=4tanxsecx\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x.
In the above equation the left-hand side part is
LHS=1+sinx1sinx1sinx1+sinxLHS=\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}
Comparing the above equation with abcd\dfrac{a}{b}-\dfrac{c}{d}, then we will get the values
a=d=1+sinxa=d=1+\sin x, b=c=1sinxb=c=1-\sin x.
Now the value of adad will be
ad=(1+sinx)(1+sinx) ad=(1+sinx)2 \begin{aligned} & ad=\left( 1+\sin x \right)\left( 1+\sin x \right) \\\ & \Rightarrow ad={{\left( 1+\sin x \right)}^{2}} \\\ \end{aligned}
Applying the formula (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab in the above equation, then we will get
ad=1+sin2x+2sinx\Rightarrow ad=1+{{\sin }^{2}}x+2\sin x
Now the value of bcbc will be
bc=(1sinx)(1sinx) bc=(1sinx)2 \begin{aligned} & bc=\left( 1-\sin x \right)\left( 1-\sin x \right) \\\ & \Rightarrow bc={{\left( 1-\sin x \right)}^{2}} \\\ \end{aligned}
Applying the formula (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab in the above equation, then we will get
bc=1+sin2x2sinx\Rightarrow bc=1+{{\sin }^{2}}x-2\sin x
Now the value of bdbd will be
bd=(1sinx)(1+sinx)bd=\left( 1-\sin x \right)\left( 1+\sin x \right)
We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}, then we will have
bd=1sin2x\Rightarrow bd=1-{{\sin }^{2}}x
From the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, the value of bdbd will be
bd=cos2x\Rightarrow bd={{\cos }^{2}}x.
Now substituting all the values, we have in the formula abcd=adbcbd\dfrac{a}{b}-\dfrac{c}{d}=\dfrac{ad-bc}{bd}, then we will get
1+sinx1sinx1sinx1+sinx=(1+sin2x+2sinx)(1+sin2x2sinx)cos2x\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=\dfrac{\left( 1+{{\sin }^{2}}x+2\sin x \right)-\left( 1+{{\sin }^{2}}x-2\sin x \right)}{{{\cos }^{2}}x}
Simplifying the above equation, then we will get
1+sinx1sinx1sinx1+sinx=1+sin2x+2sinx1sin2x+2sinxcos2x 1+sinx1sinx1sinx1+sinx=4sinxcos2x \begin{aligned} & \dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=\dfrac{1+{{\sin }^{2}}x+2\sin x-1-{{\sin }^{2}}x+2\sin x}{{{\cos }^{2}}x} \\\ & \Rightarrow \dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=\dfrac{4\sin x}{{{\cos }^{2}}x} \\\ \end{aligned}
We can write cos2x{{\cos }^{2}}x as cosx×cosx\cos x\times \cos x, now the above equation is modified as
1+sinx1sinx1sinx1+sinx=4×sinxcosx×1cosx\Rightarrow \dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\times \dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}
We have trigonometric formulas sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x, 1cosx=secx\dfrac{1}{\cos x}=\sec x. Substituting these values in the above equation, then we will get
1+sinx1sinx1sinx1+sinx=4tanxsecx\Rightarrow \dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x
Hence verified.

Note: We can also follow another method that is multiplying the term 1+sinx1sinx\dfrac{1+\sin x}{1-\sin x}with 1+sinx1+sinx\dfrac{1+\sin x}{1+\sin x} and the term 1sinx1+sinx\dfrac{1-\sin x}{1+\sin x} with 1sinx1sinx\dfrac{1-\sin x}{1-\sin x} and apply all the trigonometric formula we have and simplify the equation to get the required result.