Solveeit Logo

Question

Question: How do you use the sum or difference identities to find the exact value of \[\tan \left( {\dfrac{\pi...

How do you use the sum or difference identities to find the exact value of tan(π12)\tan \left( {\dfrac{\pi }{{12}}} \right) ?

Explanation

Solution

Hint : Here in this question to find the exact solution of given trigonometric function by using the formula of tangent difference rule defined as tan(AB)=tanAtanB1+tanAtanBtan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}} where A and B are the angles then by using the value of specified angle of trigonometric ratios on simplification, we get the required result.

Complete step-by-step answer :
Angle sum identities and angle difference identities can be used to find the function values of any angles however, the most practical use is to find exact values of an angle that can be written as a sum or difference using the familiar values for the sine, cosine and tangent of the π6\dfrac{\pi }{6} , π4\dfrac{\pi }{4} , π3\dfrac{\pi }{3} and π2\dfrac{\pi }{2} angles and their multiples.
sine addition and difference formula can be defined as:
sin(A+B)=sinA.cosB+cosA.sinB\sin (A + B) = \sin A.\,\cos B + \cos A.\,\sin B
sin(AB)=sinA.cosBcosA.sinB\sin (A - B) = \sin A.\,\cos B - \cos A.\,\sin B
cosine addition and difference formula can be defined as:
cos(A+B)=cosA.cosBsinA.sinBcos\left( {A + B} \right) = cos\,A.cos\,B - sin\,A.sin\,B
cos(AB)=cosA.cosB+sinA.sinBcos\left( {A - B} \right) = cos\,A.cos\,B + sin\,A.sin\,B
Tangent addition and difference formula can be defined as:
tan(A+B)=tanA+tanB1tanAtanBtan(A + B) = \dfrac{{tanA + tanB}}{{1 - tanA\,tanB}}
tan(AB)=tanAtanB1+tanAtanBtan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}
Consider the given question
tan(π12)\Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{{12}}} \right)
Can be written as π12=π3π4\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}
tan(π3π4)\Rightarrow \,\,\,\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)
Now using the tangent difference formula i.e., tan(AB)=tanAtanB1+tanAtanBtan(A - B) = \dfrac{{tanA - tanB}}{{1 + tanA\,tanB}}
Where angle A= π3\dfrac{\pi }{3} and B= π4\dfrac{\pi }{4} .
Therefore, tan(π3π4)=tan(π3)tan(π4)1+tan(π3)tan(π4) \Rightarrow \,\,\,tan\left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{tan\left( {\dfrac{\pi }{3}} \right) - tan\left( {\dfrac{\pi }{4}} \right)}}{{1 + tan\left( {\dfrac{\pi }{3}} \right)tan\left( {\dfrac{\pi }{4}} \right)}}
Using the value of specified angle of trigonometric tangent ratio ratios is tan(π3)=3tan\left( {\dfrac{\pi }{3}} \right) = \sqrt 3 and tan(π4)=1tan\left( {\dfrac{\pi }{4}} \right) = 1
tan(π12)=311+31\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}}
tan(π12)=311+3\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}

Multiply and divide 31\sqrt 3 - 1 , then
tan(π12)=311+3×3131\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}
tan(π12)=(31)2(1+3)(31)\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 3 - 1} \right)}}
We know the algebraic formula (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) and (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} , then
tan(π12)=(32231+12)(3212)\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\left( {{{\sqrt 3 }^2} - 2 \cdot \sqrt 3 \cdot 1 + {1^2}} \right)}}{{\left( {{{\sqrt 3 }^2} - {1^2}} \right)}}
tan(π12)=323+131\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 - 2\sqrt 3 + 1}}{{3 - 1}} [ 32=3\because \,\,{\sqrt 3 ^2} = 3 ]
tan(π12)=4232\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2}
tan(π12)=42232\Rightarrow \,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{4}{2} - \dfrac{{2\sqrt 3 }}{2}
tan(π12)=23\therefore \,\,\,\,\,tan\left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3
So, the correct answer is “232 - \sqrt 3”.

Note : In trigonometry, for the trigonometry ratios we have sum and difference formula. For the value of trigonometry ratios, we follow the table of trigonometry ratios for the standard angles. The standard angles either in the form of degree or radian the values will be the same there is no alter or change in the values.