Solveeit Logo

Question

Question: How do you use the sum and double angle identities to find \[\sin 3x\]?...

How do you use the sum and double angle identities to find sin3x\sin 3x?

Explanation

Solution

The trigonometric functions here given here that we have to solve here by using the sum and double angle identities. The following are the identities used for solving the above trigonometric function. The identities of the angle sum of sin\sin :-
sin(α+β)=sinxcosβ+cosαsinβ\sin \left( \alpha +\beta \right)\,=\,\sin \,x\,\,\cos \beta +\,\cos \alpha \,\,sin\beta and the double angle identity is:-
cos2α=cos2αsin2α=2cos2α1=12sin2α{{\cos }^{2\alpha }}\,=\,{{\cos }^{2}}\alpha \,-\,{{\sin }^{2}}\alpha \,=\,2\,\,{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha
By using the above condition we have to solve the given problem.

Complete step by step solution:
Here, we have to use the sum and double angle identities to find sin3x\sin \,3x.
So, the angle sum formula is sin(α+β)=sinαcosβ+cosαsinβ\sin \left( \alpha +\beta \right)=\sin \alpha cos\beta +cos\,\alpha \,sin\beta .
By using the formula we get, sin3x=sin(2x+x)\sin \,3x\,\,=\,\sin \,\left( 2x\,+\,x \right)
Now, we have to use the double angle formula.
cos2α=cos2αsin2α=2cos2α1=12sin2α\cos 2\alpha \,\,=\,{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha =2{{\cos }^{2}}\alpha \,\,-1\,\,=\,1-2{{\sin }^{2}}\alpha
Applying this in the problem we get,
sin3x=sin(2x+x)=sin2xcosx+cos2xsinx\sin \,3x\,=\,\sin \,\left( 2x\,+\,x \right)\,=\,\sin \,2x\,\,{{\cos }{x}}+{{\cos }{2x}}\,\,\sin x
=2sinxcos2x+sinx2sin3x=2\sin x\,\,{{\cos }^{2}}x\,\,+\,\sin x\,-2{{\sin }^{3}}x
=2sinx(1sin2x)+sinx2sin3x=\,2\sin \,x\,\left( 1-{{\sin }^{2}}x \right)+\sin x\,-\,2{{\sin }^{3}}x
Now simplifying it we get,
=2sinx2sin3x+sinx2sin3x=2\,\sin x-\,2{{\sin }^{3}}x\,+\,\sin x\,\,-\,2{{\sin }^{3}}x
=3sinx4sin3x=3\sin x\,\,-\,4{{\sin }^{3}}x

By using the sum and double angle identities for finding the sin3x{{\sin }^{3}}x we get 3sinx4sin3x3\sin x-4{{\sin }^{3}}x.

Note: Always start to solve the example from the complex side. Which is more difficult to solve. Also we have to express everything in the sin\sin and cosine. Check all the terms where we have to apply the double angle formula where it is needed. If there is sin2x{{\sin }^{2}}x and cos2x{{\cos }^{2}}x we use the Pythagoras identities to transform it.