Solveeit Logo

Question

Question: How do you use the Sum and Difference Identity to find the exact value of \( \tan {345^ \circ } \)....

How do you use the Sum and Difference Identity to find the exact value of tan345\tan {345^ \circ }.

Explanation

Solution

Hint : In order to solve this question ,split tan345\tan {345^ \circ } in to sum of angles as tan345=tan(30+315)\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) . Now apply the formula of sum of angles of tangent tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} considering AA as 3030 and BB as 315315 .The value of tan(315)\tan (315) can be find by making this a special ang as tan(270+45)\tan (270 + 45) which is equal to tan45- \tan 45 as tangent is always negative in 4th quadrant .Simplifying further the formula your will get your required result.

Complete step-by-step answer :
In order the find the exact value of tan345\tan {345^ \circ } , we have to find the two angles whose either Sum or difference is 345{345^ \circ }
We only know the exact value of tangent at angles 0,30,45,60,900,{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } .
Now have to find such a combination of the above angles with 345{345^ \circ } ,so that the sum or difference is a special angle .
If we subtract 345345 with 3030 ,we get 34530=315345 - 30 = 315 and as we know the value of 315315 can be found by tan(270+45)\tan (270 + 45) .
tan(270+45)\tan (270 + 45) is an angle which is in the 4th quadrant .
tan(315)=tan(270+45)\tan (315) = \tan (270 + 45)
Note that tan(270+θ)=tan(θ)\tan (270 + \theta ) = - \tan (\theta ) as tangent is always negative in the 4th quadrant. So,

tan(315)=tan(270+45) =tan(45) =1   \tan (315) = \tan (270 + 45) \\\ = - \tan ({45^ \circ }) \\\ = - 1 \;

tan(315)=1\tan (315) = - 1--------(1)
So, we can use
tan345=tan(30+315)\tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ })
Using formula tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} ,
tan345=tan(30+315) =tan30+tan3151tan30tan315   \tan {345^ \circ } = \tan ({30^ \circ } + {315^ \circ }) \\\ = \dfrac{{\tan {{30}^ \circ } + \tan {{315}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{315}^ \circ }}} \;
As we know tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} and from equation (1) tan(315)=1\tan (315) = - 1,our equation becomes
=13+(1)1(13)(1) =1311+13 =1333+13 =133+1   = \dfrac{{\dfrac{1}{{\sqrt 3 }} + \left( { - 1} \right)}}{{1 - \left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( { - 1} \right)}} \\\ = \dfrac{{\dfrac{1}{{\sqrt 3 }} - 1}}{{1 + \dfrac{1}{{\sqrt 3 }}}} \\\ = \dfrac{{\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}} \\\ = \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \;
To remove the square term from the denominator ,multiply and divide with (31)\left( {\sqrt 3 - 1} \right)
=133+1×(31)(31)= \dfrac{{1 - \sqrt 3 }}{{\sqrt 3 + 1}} \times \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)}}
Using formula (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}
=313+331 =2342 =32   = \dfrac{{\sqrt 3 - 1 - 3 + \sqrt 3 }}{{3 - 1}} \\\ = \dfrac{{2\sqrt 3 - 4}}{2} \\\ = \sqrt 3 - 2 \;
tan345=32\therefore \tan {345^ \circ } = \sqrt 3 - 2
Therefore, the exact value of tan345\tan {345^ \circ } is equal to 32\sqrt 3 - 2
So, the correct answer is “ 32\sqrt 3 - 2 ”.

Note : 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. Tangent is always positive in quadrant 1 and 3.
Formula:
sin(AB)=sin(A)cos(B)sin(B)cos(A)\sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right)
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
(ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}