Solveeit Logo

Question

Question: How do you use the ratio test to test the convergence of the series \(\sum{\dfrac{{{\left( n! \right...

How do you use the ratio test to test the convergence of the series (n!)2kn!\sum{\dfrac{{{\left( n! \right)}^{2}}}{kn}!} from n=1n=1 to infinity?

Explanation

Solution

Convergence, in mathematics, is a property of approaching a limit when the variable in a function increases or decreases. It is exhibited by some of the infinite functions and series. The ratio test states that the necessary condition for the series n=1xn\sum\nolimits_{n=1}^{\infty }{{{x}_{n}}} to converge is given by L=limnxn+1xn<1L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|<1.

Complete step by step solution:
We are given a series from n=1n=1 to infinity and need to test the convergence of the series. We will be using the ratio test to test the convergence of the given series.
The ratio test states that the condition for the series n=1xn\sum\nolimits_{n=1}^{\infty }{{{x}_{n}}} to converge is given by
L=limnxn+1xn<1L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|<1
The given series is convergent if L<1L<1
In our question, the series given is (n!)2kn!\sum{\dfrac{{{\left( n! \right)}^{2}}}{kn}!} from n=1n=1 to infinity.
Here,
xn=(n!)2kn!{{x}_{n}}=\sum{\dfrac{{{\left( n! \right)}^{2}}}{kn}!} ;
The value of xn+1{{x}_{n+1}} is obtained by replacing the value of nn with n+1n+1
Following the same, we get,
xn+1=((n+1)2!(k(n+1))!)\Rightarrow {{x}_{n+1}}=\left( \dfrac{{{\left( n+1 \right)}^{2}}!}{\left( k\left( n+1 \right) \right)!} \right)
Firstly, we need to solve for xn+1xn\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|
xn+1(n!)2(kn)!\Rightarrow \left| \dfrac{{{x}_{n+1}}}{\dfrac{{{\left( n! \right)}^{2}}}{\left( kn \right)!}} \right|
Substituting the value of xn+1{{x}_{n+1}}from above, we get,
((n+1)2!(k(n+1))!)(n!)2(kn)!\Rightarrow \left| \dfrac{\left( \dfrac{{{\left( n+1 \right)}^{2}}!}{\left( k\left( n+1 \right) \right)!} \right)}{\dfrac{{{\left( n! \right)}^{2}}}{\left( kn \right)!}} \right|
Let us evaluate further.
((n+1)!)2(n!)2×(kn)!(kn+k)!\Rightarrow \dfrac{{{\left( \left( n+1 \right)! \right)}^{2}}}{{{\left( n! \right)}^{2}}}\times \dfrac{\left( kn \right)!}{\left( kn+k \right)!}
Simplifying the above equation, we get,
(n+1)2(kn+k)(kn+k1)......(kn+1)\Rightarrow \dfrac{{{\left( n+1 \right)}^{2}}}{\left( kn+k \right)\left( kn+k-1 \right)......\left( kn+1 \right)}
xnxn+1=(n+1)2(kn+k)(kn+k1)......(kn+1)\therefore \left| \dfrac{{{x}_{n}}}{{{x}_{n+1}}} \right|=\dfrac{{{\left( n+1 \right)}^{2}}}{\left( kn+k \right)\left( kn+k-1 \right)......\left( kn+1 \right)}
Now, we have to find out the value of the limit for different values of k.
Following the same, for k=1k=1, the value of the limit is
limnxn+1xn=limn(n+1)2n+1\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\dfrac{{{\left( n+1 \right)}^{2}}}{n+1}
Cancelling the common factors on the right-hand side,
limnxn+1xn=limn(n+1)\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\left( n+1 \right)
Evaluating the limit,
limnxn+1xn=+\therefore \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=+\infty for k=1k=1
For k=2k=2,
limnxn+1xn=limn(n+1)2(n+1)(n+2)\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\dfrac{{{\left( n+1 \right)}^{2}}}{\left( n+1 \right)\left( n+2 \right)}
Cancelling the common factors on the right-hand side,
limnxn+1xn=limn(n+1)(n+2)\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\dfrac{{{\left( n+1 \right)}^{{}}}}{\left( n+2 \right)}
Dividing the numerator and denominator with nn on the right-hand side,
limnxn+1xn=limn(1+1n)(1+2n)\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\dfrac{{{\left( 1+\dfrac{1}{n} \right)}^{{}}}}{\left( 1+\dfrac{2}{n} \right)}
As nn \to \infty, 1n\dfrac{1}{n}\to \infty. Following the same,
limnxn+1xn=1\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=1
The value of the limit is equal to one and the result is inconclusive. So, we have to further evaluate the series n=1(n!)2(2n)!\sum\nolimits_{n=1}^{\infty }{\dfrac{{{\left( n! \right)}^{2}}}{\left( 2n \right)!}}
Expanding the factorial terms, we get,
n=1(n!)2(2n)!=n(n1)(n2)....2.12n(2n1)........(n+1)\Rightarrow \sum\nolimits_{n=1}^{\infty }{\dfrac{{{\left( n! \right)}^{2}}}{\left( 2n \right)!}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)....2.1}{2n\left( 2n-1 \right)........\left( n+1 \right)}
From series and sequences,
n(n1)(n2)....2.12n(2n1)........(n+1)=p=1npn+p\Rightarrow \dfrac{n\left( n-1 \right)\left( n-2 \right)....2.1}{2n\left( 2n-1 \right)........\left( n+1 \right)}=\prod\limits_{p=1}^{n}{\dfrac{p}{n+p}}
From the above pnp\le n ,
pn+ppp+pp2p12\Rightarrow \dfrac{p}{n+p}\le \dfrac{p}{p+p}\le \dfrac{p}{2p}\le \dfrac{1}{2}
Substituting the value on the right-hand side, we get,
n(n1)(n2)....2.12n(2n1)........(n+1)(12)n\Rightarrow \dfrac{n\left( n-1 \right)\left( n-2 \right)....2.1}{2n\left( 2n-1 \right)........\left( n+1 \right)}\le {{\left( \dfrac{1}{2} \right)}^{n}}
n=1(12)n=1\Rightarrow \sum\nolimits_{n=1}^{\infty }{{{\left( \dfrac{1}{2} \right)}^{n}}=1}
The above series is convergent, so the given series is also convergent.
Now,
For the value of k3k\ge 3 ,
limnxn+1xn=limn(n+1)2(n+1)(n+2)....(n+k)\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\dfrac{{{\left( n+1 \right)}^{2}}}{\left( n+1 \right)\left( n+2 \right)....\left( n+k \right)}
limnxn+1xn=0\therefore \displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}_{n+1}}}{{{x}_{n}}} \right|=0
\thereforeThe given series is convergent for the value k2k\ge 2

Note: One must remember that the multiplication happens to a given number down to the number one and not zero. Factorial of a number in mathematics is the product of all the positive numbers less than or equal to a number.