Solveeit Logo

Question

Question: How do you use the ratio test to test the convergence of the series \(\sum {\dfrac{{n!}}{{{n^n}}}} \...

How do you use the ratio test to test the convergence of the series n!nn\sum {\dfrac{{n!}}{{{n^n}}}} from n=1n = 1 to infinity?

Explanation

Solution

First let us know what the ratio test states. So, the ratio test says that a series xn\sum {{x_n}} is convergent if limnxn+1xn<1\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| < 1 and is divergent if limnxn+1xn>1\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| > 1 and the test fails if limnxn+1xn=1\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = 1. So, to solve this problem, we are to first find the xn+1{x_{n + 1}} term, that is the term of the series that is n+1n + 1th term. Then we will find, xn+1xn\left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| and then limnxn+1xn\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right|. Then applying the ratio test accordingly we can find, whether, limnxn+1xn\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| is less than 11 or greater than 11, that is, whether the series is convergent or divergent respectively.

Complete step by step solution:
Given, is n=1n!nn\sum\limits_{n = 1}^\infty {\dfrac{{n!}}{{{n^n}}}} .
The nth{n^{th}} term of the series is, xn=n!nn{x_n} = \dfrac{{n!}}{{{n^n}}}.
Therefore, the (n+1)th{\left( {n + 1} \right)^{th}} term of the series is, xn+1=(n+1)!(n+1)n+1{x_{n + 1}} = \dfrac{{(n + 1)!}}{{{{(n + 1)}^{n + 1}}}}.
Now, evaluating the ratio, xn+1xn=(n+1)!(n+1)n+1n!nn\left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \dfrac{{\dfrac{{\left( {n + 1} \right)!}}{{{{\left( {n + 1} \right)}^{n + 1}}}}}}{{\dfrac{{n!}}{{{n^n}}}}}.
xn+1xn=(n+1)!(n+1)n+1.nnn!\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \dfrac{{\left( {n + 1} \right)!}}{{{{\left( {n + 1} \right)}^{n + 1}}}}.\dfrac{{{n^n}}}{{n!}}
We know, n!=n.(n1).(n2).....3.2.1n! = n.\left( {n - 1} \right).\left( {n - 2} \right).....3.2.1
Using, this property, we get,
xn+1xn=(n+1).n!(n+1)n.(n+1).nnn!\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \dfrac{{\left( {n + 1} \right).n!}}{{{{\left( {n + 1} \right)}^n}.\left( {n + 1} \right)}}.\dfrac{{{n^n}}}{{n!}}
Now, cancelling the common terms between the numerator and denominator, we get,
xn+1xn=nn(n+1)n\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \dfrac{{{n^n}}}{{{{\left( {n + 1} \right)}^n}}}
xn+1xn=(nn+1)n\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = {\left( {\dfrac{n}{{n + 1}}} \right)^n}
Now, dividing both numerator and denominator by nn{n^n}, we get,
xn+1xn=(nnnn+1n)n\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = {\left( {\dfrac{{\dfrac{n}{n}}}{{\dfrac{n}{n} + \dfrac{1}{n}}}} \right)^n}
xn+1xn=(11+1n)n\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = {\left( {\dfrac{1}{{1 + \dfrac{1}{n}}}} \right)^n}
xn+1xn=1(1+1n)n\Rightarrow \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \dfrac{1}{{{{\left( {1 + \dfrac{1}{n}} \right)}^n}}}
Now, taking limit of the ratio, we get,
limnxn+1xn=limn(1(1+1n)n)\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{1}{{{{\left( {1 + \dfrac{1}{n}} \right)}^n}}}} \right)
limnxn+1xn=(1limn(1+1n)n)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \left( {\dfrac{1}{{\mathop {\lim }\limits_{n \to \infty } {{\left( {1 + \dfrac{1}{n}} \right)}^n}}}} \right)
Now, we know, limn(1+1n)n=e\mathop {\lim }\limits_{n \to \infty } {\left( {1 + \dfrac{1}{n}} \right)^n} = e
Therefore, using this property, we can write,
limnxn+1xn=(1e)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \left( {\dfrac{1}{e}} \right)
Now, we know, 2<e<32 < e < 3.
That is clearly, e>1e > 1
1e<1\Rightarrow \dfrac{1}{e} < 1
Therefore, we can say,
limnxn+1xn=(1e)<1\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x_{n + 1}}}}{{{x_n}}}} \right| = \left( {\dfrac{1}{e}} \right) < 1
By applying the ratio test, we can clearly say, the series is convergent.

Note: The ratio test is one of the ways to test the convergence of a series. It is preferable to use the test if the series has terms in the form of fractions. Other than the ratio test, there is also the Cauchy’s root test, in which a series xn\sum {{x_n}} is convergent if limn(xn)1n<1\mathop {\lim }\limits_{n \to \infty } \left| {{{\left( {{x_n}} \right)}^{\dfrac{1}{n}}}} \right| < 1 and is divergent if limn(xn)1n>1\mathop {\lim }\limits_{n \to \infty } \left| {\left| {{{\left( {{x_n}} \right)}^{\dfrac{1}{n}}}} \right|} \right| > 1 and the test fails if limn(xn)1n=1\mathop {\lim }\limits_{n \to \infty } \left| {\left| {{{\left( {{x_n}} \right)}^{\dfrac{1}{n}}}} \right|} \right| = 1.