Solveeit Logo

Question

Question: How do you use the product to sum formulas to write \[6\sin \left( \dfrac{\pi }{4} \right)\cos \left...

How do you use the product to sum formulas to write 6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) as a sum or difference?

Explanation

Solution

In order to find the solution of the given question that is to use the product to sum formulas to write 6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) as a sum or difference apply one of the identities of trigonometry that is named as product of sum formula represented as 2sin(x)cos(y)=sin(x+y)+sin(xy)2\sin \left( x \right)\cos \left( y \right)=\sin \left( x+y \right)+\sin \left( x-y \right). sin(2x)=2sin(x)cos(x)\sin \left( 2x \right)=2\sin \left( x \right)\cos \left( x \right) and solve the given expression further to get the simplified answer.

Complete step by step answer:
According to the question, given expression in the question is as follows:
6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right)
3(2sin(π4)cos(π4))\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)
Applying one of the identities of trigonometry which is named as product of sum formula that is 2sin(x)cos(y)=sin(x+y)+sin(xy)2\sin \left( x \right)\cos \left( y \right)=\sin \left( x+y \right)+\sin \left( x-y \right) in the above expression we get:
3(2sin(π4)cos(π4))=3(sin(π4+π4)+sin(π4π4))\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)=3\left( \sin \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)+\sin \left( \dfrac{\pi }{4}-\dfrac{\pi }{4} \right) \right)
Now simplify the above expression, by solving the bracket outside the above expression, we get:
3(2sin(π4)cos(π4))=3sin(π4+π4)+3sin(π4π4)\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)=3\sin \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)+3\sin \left( \dfrac{\pi }{4}-\dfrac{\pi }{4} \right)
After this simplify the above expression, by solving the bracket of the angle of sine we will have:
3(2sin(π4)cos(π4))=3sin(π2)+3sin0\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)=3\sin \left( \dfrac{\pi }{2} \right)+3\sin 0
We know that sin(0)=0\sin \left( 0 \right)=0, so applying this result in the above formula we will have:
3(2sin(π4)cos(π4))=3sin(π2)\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)=3\sin \left( \dfrac{\pi }{2} \right)
Therefore, the given expression 6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) is equal to 3sin(π2)3\sin \left( \dfrac{\pi }{2} \right).

Note:
There’s an alternative way to solve the above question, which is as follows:
Given expression in the question is as follows:
6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right)
We can rewrite the above expression as follows:
3(2sin(π4)cos(π4))\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)
Applying one of the identities of trigonometry that is sin(2x)=2sin(x)cos(x)\sin \left( 2x \right)=2\sin \left( x \right)\cos \left( x \right) in the above expression we get:
3(2sin(2π4))\Rightarrow 3\left( 2\sin \left( 2\cdot \dfrac{\pi }{4} \right) \right)
Now simplify the above expression, by solving the bracket of the angle of sine and the bracket outside the above expression, we get:
3sin(π2)\Rightarrow 3\sin \left( \dfrac{\pi }{2} \right)
Hence, we can write the final answer as:
3(2sin(π4)cos(π4))=3sin(π2)\Rightarrow 3\left( 2\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) \right)=3\sin \left( \dfrac{\pi }{2} \right)
Therefore, the given expression 6sin(π4)cos(π4)6\sin \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{4} \right) is equal to 3sin(π2)3\sin \left( \dfrac{\pi }{2} \right).