Solveeit Logo

Question

Question: How do you use the power reducing formulas to rewrite the expression \({\sin ^8}x\) in terms of the ...

How do you use the power reducing formulas to rewrite the expression sin8x{\sin ^8}x in terms of the first power of cosine?

Explanation

Solution

First use the law of indices for brackets to change the sine function into cosine using their relation identity. Then after converting to cosine, use the algebraic identity (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2} in order to simplify further and use compound angle formula for cosine in order to reduce its power to one.

Formula used:
Sine and cosine formula 2sin2x=1cos2x2{\sin ^2}x = 1 - \cos 2x
Algebraic identities for expansion of
(a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
(ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2}
Compound angle formula of cosine 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x

Complete step by step answer:
In order to rewrite the expression sin8x{\sin ^8}x in terms of first power of cosine we will first convert sine into cosine as follows
sin8x{\sin ^8}x
With the help of law of indices for brackets we can write it as
(sin2x)4{\left( {{{\sin }^2}x} \right)^4}
Dividing and multiplying it by 1616 we will get
16(sin2x)416 116(2sin2x)4        [24=16] \dfrac{{16{{\left( {{{\sin }^2}x} \right)}^4}}}{{16}} \\\ \Rightarrow\dfrac{1}{{16}}{\left( {2{{\sin }^2}x} \right)^4}\;\;\;\;\left[ {\because {2^4} = 16} \right] \\\
We know that 2sin2x=1cos2x2{\sin ^2}x = 1 - \cos 2x , so replacing it with cosine and also again using the law of indices for brackets, we will get
116((1cos2x)2)2\dfrac{1}{{16}}{\left( {{{\left( {1 - \cos 2x} \right)}^2}} \right)^2}
Using the algebraic identity (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2} to open the parentheses
116(12cos2x+cos22x)2\dfrac{1}{{16}}{\left( {1 - 2\cos 2x + {{\cos }^2}2x} \right)^2}
Taking (12cosx)  as  a  and  cos22x  as  b(1 - 2\cos x)\;{\text{as}}\;a\;{\text{and}}\;{\cos ^2}2x\;{\text{as}}\;b and using the identity (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2} to expand it more

\dfrac{1}{{16}}\left( {{{\left( {1 - 2\cos 2x} \right)}^2} + 2\left( {1 - \cos 2x} \right){{\cos }^2}2x + {{\left( {{{\cos }^2}2x} \right)}^2}} \right) \\\ $$ Simplifying this further with help of algebraic identities and compound cosine formula, $$\dfrac{1}{{16}}\left( {1 - 2 \times 2\cos 2x + {{\left( {2\cos 2x} \right)}^2} + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{2{{\cos }^2}2x}}{2}} \right)}^2}} \right) \\\ \Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 4{{\cos }^2}2x + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\\ \Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 6{{\cos }^2}2x - \left( {3\cos 2x + \cos 6x} \right) + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 4{{\cos }^3}x = 3\cos x + \cos 3x} \right]\; \\\ \Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3\left( {1 + \cos 4x} \right) - \left( {3\cos 2x + \cos 6x} \right) + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\\ \Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3 + 3\cos 4x - 3\cos 2x - \cos 6x + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\; \\\ \Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2\left( {1 + {{\cos }^2}4x + 2\cos 4x} \right)}}{{2 \times 4}}} \right)} \right)\; \\\ \Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + 2{{\cos }^2}4x + 4\cos 4x}}{8}} \right)} \right) \\\ \Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + (1 + \cos 8x) + 4\cos 4x}}{8}} \right)} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\\ \Rightarrow\dfrac{1}{{16}}\left( {\dfrac{{32 - 56\cos 2x + 24\cos 4x - 8\cos 6x + 3 + \cos 8x + 4\cos 4x}}{8}} \right) \\\ \Rightarrow\dfrac{1}{{16 \times 8}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\\ \therefore\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\\ $$ **Therefore, $$\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right)$$ is the simplified form of ${\sin ^8}x$ in terms of first power of cosine.** **Note:** This is a lengthy and complex expansion so take care of the powers of the functions, signs (positive and negative), also where you are extra multiplying a factor so check there if you have divided with the same factor or not and write formulas in the line where it is being used.