Solveeit Logo

Question

Question: How do you use the limit process to find the area of the region between the graph \[y=16-{{x}^{2}}\]...

How do you use the limit process to find the area of the region between the graph y=16x2y=16-{{x}^{2}} and the x-axis over the interval [1,3]\left[ 1,3 \right]?

Explanation

Solution

In order to find the solution of the given question that is to use the limit process to find the area of the region between the graph y=16x2y=16-{{x}^{2}} and the x-axis over the interval apply the limit definition of the definite integral which states that abf(x)dx=limni=1nf(xi)Δx\int_{a}^{b}{f\left( x \right)dx=\displaystyle \lim_{n \to \infty }}\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x where, for each positive integer n, we let Δx=ban\Delta x=\dfrac{b-a}{n}
And for i=1,2,3,...,n,i=1,2,3,...,n, we let xi=a+iΔx{{x}_{i}}=a+i\Delta x (These xi{{x}_{i}} are the right endpoints of the subintervals.)

Complete step by step answer:
According to the question, we have to find the following using limit process:
13(16x2)dx\int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx}
To find the value of above expression using limit process we will use the formula that is abf(x)dx=limni=1nf(xi)Δx\int_{a}^{b}{f\left( x \right)dx=\displaystyle \lim_{n \to \infty }}\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x where, for each positive integer n, we let Δx=ban\Delta x=\dfrac{b-a}{n}
And for i=1,2,3,...,n,i=1,2,3,...,n, we let xi=a+iΔx{{x}_{i}}=a+i\Delta x.
So first we have to find Δx\Delta x
For each n, we get
Δx=ban=31n=2n\Delta x=\dfrac{b-a}{n}=\dfrac{3-1}{n}=\dfrac{2}{n}
Then find the value of xi{{x}_{i}}, we will have:
xi=a+iΔx=1+i2n=1+2in{{x}_{i}}=a+i\Delta x=1+i\dfrac{2}{n}=1+\dfrac{2i}{n}
Now we will find the value of f(xi)f\left( {{x}_{i}} \right), we will get:
f(xi)=16(xi)2=16(1+2in)2f\left( {{x}_{i}} \right)=16-{{\left( {{x}_{i}} \right)}^{2}}=16-{{\left( 1+\dfrac{2i}{n} \right)}^{2}}
f(xi)=16(1+4in+4i2n2)=154in4i2n2\Rightarrow f\left( {{x}_{i}} \right)=16-\left( 1+\dfrac{4i}{n}+\dfrac{4{{i}^{2}}}{{{n}^{2}}} \right)=15-\dfrac{4i}{n}-\dfrac{4{{i}^{2}}}{{{n}^{2}}}
After this evaluate i=1nf(xi)Δx\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x in order to evaluate the sums, we will get:
i=1nf(xi)Δx=i=1n(154in4i2n2)2n\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x=\sum\limits_{i=1}^{n}{\left( 15-\dfrac{4i}{n}-\dfrac{4{{i}^{2}}}{{{n}^{2}}} \right)}\dfrac{2}{n}
i=1nf(xi)Δx=i=1n(30n8in28i2n3)\Rightarrow \sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x=\sum\limits_{i=1}^{n}{\left( \dfrac{30}{n}-\dfrac{8i}{{{n}^{2}}}-\dfrac{8{{i}^{2}}}{{{n}^{3}}} \right)}
i=1nf(xi)Δx=30ni=1n(1)8n2i=1n(i)8n3i=1n(i2)\Rightarrow \sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x=\dfrac{30}{n}\sum\limits_{i=1}^{n}{\left( 1 \right)-}\dfrac{8}{{{n}^{2}}}\sum\limits_{i=1}^{n}{\left( i \right)}-\dfrac{8}{{{n}^{3}}}\sum\limits_{i=1}^{n}{\left( {{i}^{2}} \right)}
Applying the summation formulas in the above expression we will get:
i=1nf(xi)Δx=30n(n)8n2(n(n+1)2)8n3(n(n+1)(2n+1)6)\Rightarrow \sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x=\dfrac{30}{n}\left( n \right)-\dfrac{8}{{{n}^{2}}}\left( \dfrac{n\left( n+1 \right)}{2} \right)-\dfrac{8}{{{n}^{3}}}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)
Now putting the above values in the formula abf(x)dx=limni=1nf(xi)Δx\int_{a}^{b}{f\left( x \right)dx=\displaystyle \lim_{n \to \infty }}\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x, we will get:
13(16x2)dx=limn(304(n(n+1)n2)43(n(n+1)(2n+1)n3))\Rightarrow \int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx=}\displaystyle \lim_{n \to \infty }\left( 30-4\left( \dfrac{n\left( n+1 \right)}{{{n}^{2}}} \right)-\dfrac{4}{3}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{{{n}^{3}}} \right) \right)
Now we know that limn(n(n+1)n2)=1\displaystyle \lim_{n \to \infty }\left( \dfrac{n\left( n+1 \right)}{{{n}^{2}}} \right)=1 and limn(n(n+1)(2n+1)n3)=2\displaystyle \lim_{n \to \infty }\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{{{n}^{3}}} \right)=2, substituting these values in the above expression we will have:
13(16x2)dx=304(1)43(2)\Rightarrow \int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx=}30-4\left( 1 \right)-\dfrac{4}{3}\left( 2 \right)
Simplifying the above expression by opening the brackets and taking the LCM we will have:
13(16x2)dx=90312383\Rightarrow \int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx=}\dfrac{90}{3}-\dfrac{12}{3}-\dfrac{8}{3}
After solving it further we will get:
13(16x2)dx=703\Rightarrow \int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx=}\dfrac{70}{3}
Therefore, the area of the region between the graph y=16x2y=16-{{x}^{2}} and the x-axis over the interval [1,3]\left[ 1,3 \right] that is 13(16x2)dx\int_{1}^{3}{\left( 16-{{x}^{2}} \right)dx}equal to 703\dfrac{70}{3}.

Note:
Students can go wrong by applying the wrong formula of limit definition of definite integral that is they apply abf(x)dx=limni=1nf(Δx)xi\int_{a}^{b}{f\left( x \right)dx=\displaystyle \lim_{n \to \infty }}\sum\limits_{i=1}^{n}{f\left( \Delta x \right)}{{x}_{i}}which is completely wrong and leads to the wrong answer. It’s important to remember that the formula of limit definition of definite integral is abf(x)dx=limni=1nf(xi)Δx\int_{a}^{b}{f\left( x \right)dx=\displaystyle \lim_{n \to \infty }}\sum\limits_{i=1}^{n}{f\left( {{x}_{i}} \right)}\Delta x where, for each positive integer n, Δx=ban\Delta x=\dfrac{b-a}{n} for i=1,2,3,...,n,i=1,2,3,...,n, and xi=a+iΔx{{x}_{i}}=a+i\Delta x.