Solveeit Logo

Question

Question: How do you use the integral test to determine if \(\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln ...

How do you use the integral test to determine if n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} is convergent or divergent?

Explanation

Solution

To solve this question use the Integral Test to check given series is convergent or divergent.
According to the integral test We determine the convergence of n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} by comparing it with
31xlnxln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx. Then the series n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} and the integral 31xlnxln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx both converge or both diverge.
If the integral gives finite value then it converges otherwise it will diverge.
To solve the integral 31xlnxln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx, make substitution u=ln(lnx)u = \ln (\ln x).
Which gives the derivative of uu as du=1xlnxdxdu = \dfrac{1}{{x\ln x}}dx. Then change the limit integration of uu from ln(ln3)\ln (\ln 3) to \infty .
Solve the integration using formula 1xdx=lnx+C\int {\dfrac{1}{x}dx} = \ln x + C and remember limulnu\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty .

Complete step-by-step answer:
Apply the integral test to find convergence of the series n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} .
The Integral Test: Suppose the sequence an=f(n){a_n} = f(n) is of positive terms, where ff is a continuous, positive decreasing function. Then the series n=Nan\sum\limits_{n = N}^\infty {{a_n}} , N is positive integer and the integral Nf(x)dx\int\limits_N^\infty {f(x)} dx both converge or both diverge.
Consider the function f(n)=1nlnnln(lnn)f(n) = \dfrac{1}{{n\ln n\ln (\ln n)}} so, f(x)=1xlnxln(lnx)f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}.
The function f(x)=1xlnxln(lnx)f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}is continuous, positive, and decreasing for x3x \geqslant 3 so we can apply the integral test to the series.
Now, we have to find31xlnxln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx.
Here we use the substitutionu=ln(lnx)u = \ln (\ln x).
Use the chain rule to find the derivative of u=ln(lnx)u = \ln (\ln x).
\therefore du=1lnxddx(lnx)du = \dfrac{1}{{\ln x}}\dfrac{d}{{dx}}(\ln x)
du=1lnx×1xdx\Rightarrow du = \dfrac{1}{{\ln x}} \times \dfrac{1}{x}dx
du=1xlnxdx\Rightarrow du = \dfrac{1}{{x\ln x}}dx
Apply the limits of xx.
Put x=3x = 3into uu
u=ln(ln3)\Rightarrow u = \ln (\ln 3)
Put x=x = \infty into uu
u=ln(ln)\Rightarrow u = \ln (\ln \infty )
u=\Rightarrow u = \infty(ln=\because \ln \infty = \infty )
So the integral becomes,
31xlnxln(lnx)dx=31xlnx×1ln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_3^\infty {\dfrac{1}{{x\ln x}}} \times \dfrac{1}{{\ln (\ln x)}}dx
31xlnxln(lnx)dx=ln(ln3)1udu\Rightarrow \int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du
Apply the formula of integration1xdx=lnx+C\int {\dfrac{1}{x}dx} = \ln x + C.
ln(ln3)1udu=[lnu]ln(ln3)\Rightarrow \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du = \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty
Here, as uu approaches to \infty lnu\ln u also approaches to \infty that implies limulnu\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty .
[lnu]ln(ln3)=ln(ln(ln3))\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty - \ln (\ln (\ln 3))
[lnu]ln(ln3)=\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty
So the integral 31xlnxln(lnx)dx\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx does not have finite values hence n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} is divergent.

The series n=31nlnnln(lnn)\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} is divergent.

Note:
Students always forget to change the limit of integration whenever we substitute the value in the definite integral we have to find the limits for the substitution.
Integration of 1xdx=lnx+C\int {\dfrac{1}{x}dx} = \ln x + C, don’t use power formulas to integrate.
The chain rule: If f(t)f(t) and g(t)g(t) are the function of tt then the derivative of its composite function is given by ddx[f(g(t)]=g(t)f(g(t))\dfrac{d}{{dx}}[f(g(t)] = g'(t)f'(g(t))