Question
Question: How do you use the integral test to determine if \(\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln ...
How do you use the integral test to determine if n=3∑∞nlnnln(lnn)1 is convergent or divergent?
Solution
To solve this question use the Integral Test to check given series is convergent or divergent.
According to the integral test We determine the convergence of n=3∑∞nlnnln(lnn)1 by comparing it with
3∫∞xlnxln(lnx)1dx. Then the series n=3∑∞nlnnln(lnn)1 and the integral 3∫∞xlnxln(lnx)1dx both converge or both diverge.
If the integral gives finite value then it converges otherwise it will diverge.
To solve the integral 3∫∞xlnxln(lnx)1dx, make substitution u=ln(lnx).
Which gives the derivative of u as du=xlnx1dx. Then change the limit integration of u from ln(ln3) to ∞.
Solve the integration using formula ∫x1dx=lnx+C and remember u→∞limlnu→∞.
Complete step-by-step answer:
Apply the integral test to find convergence of the series n=3∑∞nlnnln(lnn)1.
The Integral Test: Suppose the sequence an=f(n) is of positive terms, where f is a continuous, positive decreasing function. Then the series n=N∑∞an , N is positive integer and the integral N∫∞f(x)dx both converge or both diverge.
Consider the function f(n)=nlnnln(lnn)1 so, f(x)=xlnxln(lnx)1.
The function f(x)=xlnxln(lnx)1is continuous, positive, and decreasing for x⩾3 so we can apply the integral test to the series.
Now, we have to find3∫∞xlnxln(lnx)1dx.
Here we use the substitutionu=ln(lnx).
Use the chain rule to find the derivative of u=ln(lnx).
∴ du=lnx1dxd(lnx)
⇒du=lnx1×x1dx
⇒du=xlnx1dx
Apply the limits of x.
Put x=3into u
⇒u=ln(ln3)
Put x=∞into u
⇒u=ln(ln∞)
⇒u=∞(∵ln∞=∞ )
So the integral becomes,
3∫∞xlnxln(lnx)1dx=3∫∞xlnx1×ln(lnx)1dx
⇒3∫∞xlnxln(lnx)1dx=ln(ln3)∫∞u1du
Apply the formula of integration∫x1dx=lnx+C.
⇒ln(ln3)∫∞u1du=[lnu]ln(ln3)∞
Here, as u approaches to ∞ lnu also approaches to ∞that implies u→∞limlnu→∞.
∴[lnu]ln(ln3)∞=∞−ln(ln(ln3))
∴[lnu]ln(ln3)∞=∞
So the integral 3∫∞xlnxln(lnx)1dx does not have finite values hence n=3∑∞nlnnln(lnn)1is divergent.
The series n=3∑∞nlnnln(lnn)1 is divergent.
Note:
Students always forget to change the limit of integration whenever we substitute the value in the definite integral we have to find the limits for the substitution.
Integration of ∫x1dx=lnx+C, don’t use power formulas to integrate.
The chain rule: If f(t) and g(t) are the function of t then the derivative of its composite function is given by dxd[f(g(t)]=g′(t)f′(g(t))