Solveeit Logo

Question

Question: How do you use the half-angle identity to find the exact value of \(\tan 165^\circ \)?...

How do you use the half-angle identity to find the exact value of tan165\tan 165^\circ ?

Explanation

Solution

We start solving the problem by recalling the half-angle formula for the sine function as tanx2=sinx1+cosx\tan \dfrac{x}{2} = \dfrac{{\sin x}}{{1 + \cos x}}. We then find the value of x so that x2\dfrac{x}{2} is equal to the value 165165^\circ . We then make use of the results cos(2πθ)=cosθ\cos \left( {2\pi - \theta } \right) = \cos \theta and sin(2πθ)=sinθ\sin \left( {2\pi - \theta } \right) = - \sin \theta to proceed through the problem. We then make the necessary arrangements inside the square root and make use of the fact that 165165^\circ lies in the second quadrant and the tan function is negative in the second quadrant to get the required answer.

Complete step-by-step answer:
According to the problem, we are asked to find the value of tan165\tan 165^\circ using the half-angle formula. Let us recall the half-angle formula for the tangent function.
We know that the half-angle formula for the tangent function is defined as,
tanx2=sinx1+cosx\tan \dfrac{x}{2} = \dfrac{{\sin x}}{{1 + \cos x}} ….. (1)
Now, we need to find the value of tan165\tan 165^\circ . So, we have
x2=165\Rightarrow \dfrac{x}{2} = 165^\circ
Multiply both sides by 2,
x=330\Rightarrow x = 330^\circ
Let us substitute the value in equation (1)
tan165=sin3301+cos330\Rightarrow \tan 165^\circ = \dfrac{{\sin 330^\circ }}{{1 + \cos 330^\circ }}
As we know cos(2πθ)=cosθ\cos \left( {2\pi - \theta } \right) = \cos \theta and sin(2πθ)=sinθ\sin \left( {2\pi - \theta } \right) = - \sin \theta . Then,
tan165=sin(36030)1+cos(36030)\Rightarrow \tan 165^\circ = \dfrac{{\sin \left( {360^\circ - 30^\circ } \right)}}{{1 + \cos \left( {360^\circ - 30^\circ } \right)}}
Simplify the terms,
tan165=sin301+cos30\Rightarrow \tan 165^\circ = \dfrac{{ - \sin 30^\circ }}{{1 + \cos 30^\circ }}
Now substitute the values,
tan165=121+32\Rightarrow \Rightarrow \tan 165^\circ = \dfrac{{ - \dfrac{1}{2}}}{{1 + \dfrac{{\sqrt 3 }}{2}}}
Take LCM and cancel out the common factor,
tan165=12+3\Rightarrow \tan 165^\circ = \dfrac{{ - 1}}{{2 + \sqrt 3 }}
Now, rationalize the denominator by multiplying by its conjugate,
tan165=12+3×2323\Rightarrow \tan 165^\circ = \dfrac{{ - 1}}{{2 + \sqrt 3 }} \times \dfrac{{2 - \sqrt 3 }}{{2 - \sqrt 3 }}
Simplify the terms,
tan165=2+343\Rightarrow \tan 165^\circ = \dfrac{{ - 2 + \sqrt 3 }}{{4 - 3}}
Simplify the terms,
tan165=32\Rightarrow \tan 165^\circ = \sqrt 3 - 2

Hence, the value of tan165\tan 165^\circ is 32\sqrt 3 - 2

Note:
We should perform each step carefully in order to avoid calculation mistakes and confusion. We should keep in mind the nature of the values of trigonometric functions in different quadrants while solving this type of problem. Similarly, we can expect the formulas to find the value of sin165\sin 165^\circ and cos165\cos 165^\circ using the formula of cos2θ\cos 2\theta .